Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simple mathematcal pattern describes shape of neuron 'jungle'

21.06.2012
Neurons come in an astounding assortment of shapes and sizes, forming a thick inter-connected jungle of cells. Now, UCL neuroscientists have found that there is a simple pattern that describes the tree-like shape of all neurons.

Neurons look remarkably like trees, and connect to other cells with many branches that effectively act like wires in an electrical circuit, carrying impulses that represent sensation, emotion, thought and action.

Over 100 years ago, Santiago Ramon y Cajal, the father of modern neuroscience, sought to systematically describe the shapes of neurons, and was convinced that there must be a unifying principle underlying their diversity.

Cajal proposed that neurons spread out their branches so as to use as little wiring as possible to reach other cells in the network. Reducing the amount of wiring between cells provides additional space to pack more neurons into the brain, and therefore increases its processing power.

New work by UCL neuroscientists, published today in Proceedings of the National Academy of Sciences, has revisited this century-old hypothesis using modern computational methods. They show that a simple computer program which connects points with as little wiring as possible can produce tree-like shapes which are indistinguishable from real neurons - and also happen to be very beautiful. They also show that the shape of neurons follows a simple mathematical relationship called a power law.

Power laws have been shown to be common across the natural world, and often point to simple rules underlying complex structures. Dr Herman Cuntz (UCL Wolfson Institute for Biomedical Research) and colleagues find that the power law holds true for many types of neurons gathered from across the animal kingdom, providing strong evidence for Ramon y Cajal's general principle.

The UCL team further tested the theory by examining neurons in the olfactory bulb, a part of the brain where new brain cells are constantly being formed. These neurons grow and form new connections even in the adult brain, and therefore provide a unique window into the rules behind the development of neural trees in a mature neural circuit.

The team analysed the change in shape of the newborn olfactory neurons over several days, and found that the growth of these neurons also follow the power law, providing further evidence to support the theory.

Dr Hermann Cuntz said: "The ultimate goal of neuroscience is to understand how the impenetrable neural jungle can give rise to the complexity of behaviour.

"Our findings confirm Cajal's original far-reaching insight that there is a simple pattern behind the circuitry, and provides hope that neuroscientists will someday be able to see the forest for the trees."

Clare Ryan | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>