Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silk-based optical waveguides meet biomedical needs

01.09.2009
There is a growing need for biocompatible photonic components for biomedical applications – from in vivo glucose monitoring to detecting harmful viruses or the telltale markers of Alzheimer's. Optical waveguides are of particular interest because of their ability to manipulate and transport light in a controlled manner in a variety of configurations.

In an article featured on the cover of Advanced Materials, researchers at Tufts University and the University of Illinois at Urbana-Champaign demonstrated a new method for fabricating silk-based optical waveguides that are biocompatible, biodegradable and can be readily functionalized with active molecules. The Tufts-UIUC team successfully demonstrated light guiding through this new class of waveguides created by direct ink writing using Bombyx mori silk fibroin inks.

"In many biomedical applications, waveguides must interface directly with living cells and tissues, requiring the waveguide constituent to be biocompatible. Biodegradability is also desirable," said Tufts' Fiorenzo Omenetto, professor of biomedical engineering in the School of Engineering and professor of physics in the School of Arts and Sciences. "The use of a biocompatible, biodegradable polymer like silk to guide light opens up new opportunities in biologically based modulation and sensing along with an opportunity to integrate light delivery within living tissue."

The research capitalized on Tufts' knowledge of silk-based biopolymers and biophotonics and the expertise of UIUC Professor Jennifer A. Lewis and graduate student Sara T. Parker in direct-write assembly to create complex planar and three-dimensional structures.

"Silks are well suited for this purpose, because they are the strongest and toughest natural fibers known," said David Kaplan, professor and chair of the biomedical engineering department at Tufts' School of Engineering. "Furthermore, the ability to biochemically functionalize or incorporate dopants into the silk-fibroin ink allows for unconventional photoactivation of the waveguides, which is not easily achieved otherwise."

Direct ink writing is a simple, inexpensive technique that does not require harsh processing steps. A computer-controlled three-axis translation stage precisely moves a syringe barrel that houses a viscous ink, which is extruded from a fine deposition nozzle under pressure. The ink flows rapidly through the nozzle, and equally rapidly solidifies upon exiting to retain a filamentary shape while maintaining sufficient optical clarity to guide light.

"Silk Fibroin Waveguides: Biocompatible Silk Printed Optical Waveguides" appeared in the June 19, 2009, issue of Advanced Materials, authored by Sara T. Parker, Peter Domachuk, Jason Amsden, Jason Bressner, Jennifer A. Lewis, David L. Kaplan, and Fiorenzo G. Omenetto.

Research funding was provided by a National Science Foundation Graduate Research Fellowship, the Defense Advanced Research Projects Agency, the Air Force Office of Scientific Research, and the US Department of Energy.

Tufts University School of Engineering is uniquely positioned to educate the technological leaders of tomorrow. Located on Tufts' Medford/Somerville campus, the School of Engineering offers a rigorous engineering education in an environment characterized by the best blending of a liberal arts college atmosphere with the intellectual and technological resources of a world-class research university. Close collaboration with the School of Arts and Sciences and the university's extraordinary collection of excellent professional schools creates a wealth of educational and research opportunities. The School of Engineering's primary goal is to educate engineers committed to the innovative and ethical application of technology in the solution of societal problems. It also seeks to be a leader among peer institutions in targeted areas of interdisciplinary research and education that impact the well-being of society, including bioengineering, sustainability and innovation in engineering education.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Kim Thurler | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>