Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silk-based optical waveguides meet biomedical needs

01.09.2009
There is a growing need for biocompatible photonic components for biomedical applications – from in vivo glucose monitoring to detecting harmful viruses or the telltale markers of Alzheimer's. Optical waveguides are of particular interest because of their ability to manipulate and transport light in a controlled manner in a variety of configurations.

In an article featured on the cover of Advanced Materials, researchers at Tufts University and the University of Illinois at Urbana-Champaign demonstrated a new method for fabricating silk-based optical waveguides that are biocompatible, biodegradable and can be readily functionalized with active molecules. The Tufts-UIUC team successfully demonstrated light guiding through this new class of waveguides created by direct ink writing using Bombyx mori silk fibroin inks.

"In many biomedical applications, waveguides must interface directly with living cells and tissues, requiring the waveguide constituent to be biocompatible. Biodegradability is also desirable," said Tufts' Fiorenzo Omenetto, professor of biomedical engineering in the School of Engineering and professor of physics in the School of Arts and Sciences. "The use of a biocompatible, biodegradable polymer like silk to guide light opens up new opportunities in biologically based modulation and sensing along with an opportunity to integrate light delivery within living tissue."

The research capitalized on Tufts' knowledge of silk-based biopolymers and biophotonics and the expertise of UIUC Professor Jennifer A. Lewis and graduate student Sara T. Parker in direct-write assembly to create complex planar and three-dimensional structures.

"Silks are well suited for this purpose, because they are the strongest and toughest natural fibers known," said David Kaplan, professor and chair of the biomedical engineering department at Tufts' School of Engineering. "Furthermore, the ability to biochemically functionalize or incorporate dopants into the silk-fibroin ink allows for unconventional photoactivation of the waveguides, which is not easily achieved otherwise."

Direct ink writing is a simple, inexpensive technique that does not require harsh processing steps. A computer-controlled three-axis translation stage precisely moves a syringe barrel that houses a viscous ink, which is extruded from a fine deposition nozzle under pressure. The ink flows rapidly through the nozzle, and equally rapidly solidifies upon exiting to retain a filamentary shape while maintaining sufficient optical clarity to guide light.

"Silk Fibroin Waveguides: Biocompatible Silk Printed Optical Waveguides" appeared in the June 19, 2009, issue of Advanced Materials, authored by Sara T. Parker, Peter Domachuk, Jason Amsden, Jason Bressner, Jennifer A. Lewis, David L. Kaplan, and Fiorenzo G. Omenetto.

Research funding was provided by a National Science Foundation Graduate Research Fellowship, the Defense Advanced Research Projects Agency, the Air Force Office of Scientific Research, and the US Department of Energy.

Tufts University School of Engineering is uniquely positioned to educate the technological leaders of tomorrow. Located on Tufts' Medford/Somerville campus, the School of Engineering offers a rigorous engineering education in an environment characterized by the best blending of a liberal arts college atmosphere with the intellectual and technological resources of a world-class research university. Close collaboration with the School of Arts and Sciences and the university's extraordinary collection of excellent professional schools creates a wealth of educational and research opportunities. The School of Engineering's primary goal is to educate engineers committed to the innovative and ethical application of technology in the solution of societal problems. It also seeks to be a leader among peer institutions in targeted areas of interdisciplinary research and education that impact the well-being of society, including bioengineering, sustainability and innovation in engineering education.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Kim Thurler | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>