Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silk-based optical waveguides meet biomedical needs

01.09.2009
There is a growing need for biocompatible photonic components for biomedical applications – from in vivo glucose monitoring to detecting harmful viruses or the telltale markers of Alzheimer's. Optical waveguides are of particular interest because of their ability to manipulate and transport light in a controlled manner in a variety of configurations.

In an article featured on the cover of Advanced Materials, researchers at Tufts University and the University of Illinois at Urbana-Champaign demonstrated a new method for fabricating silk-based optical waveguides that are biocompatible, biodegradable and can be readily functionalized with active molecules. The Tufts-UIUC team successfully demonstrated light guiding through this new class of waveguides created by direct ink writing using Bombyx mori silk fibroin inks.

"In many biomedical applications, waveguides must interface directly with living cells and tissues, requiring the waveguide constituent to be biocompatible. Biodegradability is also desirable," said Tufts' Fiorenzo Omenetto, professor of biomedical engineering in the School of Engineering and professor of physics in the School of Arts and Sciences. "The use of a biocompatible, biodegradable polymer like silk to guide light opens up new opportunities in biologically based modulation and sensing along with an opportunity to integrate light delivery within living tissue."

The research capitalized on Tufts' knowledge of silk-based biopolymers and biophotonics and the expertise of UIUC Professor Jennifer A. Lewis and graduate student Sara T. Parker in direct-write assembly to create complex planar and three-dimensional structures.

"Silks are well suited for this purpose, because they are the strongest and toughest natural fibers known," said David Kaplan, professor and chair of the biomedical engineering department at Tufts' School of Engineering. "Furthermore, the ability to biochemically functionalize or incorporate dopants into the silk-fibroin ink allows for unconventional photoactivation of the waveguides, which is not easily achieved otherwise."

Direct ink writing is a simple, inexpensive technique that does not require harsh processing steps. A computer-controlled three-axis translation stage precisely moves a syringe barrel that houses a viscous ink, which is extruded from a fine deposition nozzle under pressure. The ink flows rapidly through the nozzle, and equally rapidly solidifies upon exiting to retain a filamentary shape while maintaining sufficient optical clarity to guide light.

"Silk Fibroin Waveguides: Biocompatible Silk Printed Optical Waveguides" appeared in the June 19, 2009, issue of Advanced Materials, authored by Sara T. Parker, Peter Domachuk, Jason Amsden, Jason Bressner, Jennifer A. Lewis, David L. Kaplan, and Fiorenzo G. Omenetto.

Research funding was provided by a National Science Foundation Graduate Research Fellowship, the Defense Advanced Research Projects Agency, the Air Force Office of Scientific Research, and the US Department of Energy.

Tufts University School of Engineering is uniquely positioned to educate the technological leaders of tomorrow. Located on Tufts' Medford/Somerville campus, the School of Engineering offers a rigorous engineering education in an environment characterized by the best blending of a liberal arts college atmosphere with the intellectual and technological resources of a world-class research university. Close collaboration with the School of Arts and Sciences and the university's extraordinary collection of excellent professional schools creates a wealth of educational and research opportunities. The School of Engineering's primary goal is to educate engineers committed to the innovative and ethical application of technology in the solution of societal problems. It also seeks to be a leader among peer institutions in targeted areas of interdisciplinary research and education that impact the well-being of society, including bioengineering, sustainability and innovation in engineering education.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Kim Thurler | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>