Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silencing a protein could kill T-Cells, reverse leukemia

24.10.2008
Blocking the signals from a protein that activates cells in the immune system could help kill cells that cause a rare form of blood cancer, according to physicists and oncologists who combined computer modeling and molecular biology in their discovery.

Researchers say the breakthrough could provide more efficient ways of targeting diseases such as leukemia, and help in the potential development of vaccines for viruses that cause AIDS.

The human immune system has a two-part strategy when dealing with infections. It generates antibodies that bind with bacteria and viruses to neutralize them. For a short time, the immune system also produces large numbers of a type of white blood cell, cytotoxic T-cell that kills other infected cells.

Once the pathogens are eliminated, these killer T-cells quickly die on their own, save for a few that remain in case the same infection returns. But in rare cases, these cells fail to follow their scripted lifecycle.

"When these cells don't normally die, they expand gradually over time and start attacking the body itself," said Thomas Loughran, M.D., lead author and director of Penn State Hershey Cancer Institute. "They can attack the joints to cause autoimmune diseases such as rheumatoid arthritis, and attack the bone marrow to cause leukemia."

Loughran, professor of medicine, and his Penn State colleagues are trying to tease out the conditions that cause the abnormal expansion of T-cells and trigger a disease known as large granular lymphocyte leukemia. So they constructed an intricate computer model illustrating the signaling network involved in the activation of the T-cells, as well as their programmed death.

The network model strings together complex data of molecular pathways inside a cell involving hundreds of genes and proteins and tries to predict an outcome based on how the genes and proteins interact.

"The interactions among proteins make them turn ON or OFF or intermittently ON or OFF to get billions of possibilities with hundreds of proteins," said Reka Albert, co-author and Penn State associate professor of physics and biology. "By simulating the protein interactions and tracing the ON/OFF states of all those proteins at the same time, we can see whether the cells live or die."

Albert explains that the model could help researchers zero in on the exact location of the signaling abnormalities that are keeping T-cells from dying. Once that is known, specific genes or proteins could be targeted with drugs to get rid of the abnormality.

Sifting through the billions of possibilities projected by the model, the researchers have found two proteins – IL-15 and PDGF – that appear to be crucial in keeping the T-cells alive. While IL-15 is key to the survival and activation of T-cells, PDGF stimulates the growth of those cells.

"You need the presence of both these proteins to create conditions in which the cytotoxic T-cells can proliferate," said Loughran, whose team's findings were recently published this week in the Proceedings of the National Academy of Sciences. "That is a major point of the discovery."

The researchers have also discovered another signaling protein -- NFêB -- controlled by the two proteins, which protects cancer cells from dying if it is over expressed.

"NFêB controls a host of other proteins related to inflammation in the body and our model suggests that if we keep it in the OFF state, it is able to induce cell death in the T-cells," explained Albert, who, together with graduate student Ranran Zhang, created the model. "In other words, we can reverse the disease by setting this molecule OFF."

When researchers blocked NFêB with drugs in cells from leukemia patients, they found a significant increase in mortality among the abnormal T-cells, suggesting that NFêB helps in the survival of leukemia cells.

"Basically when this protein is inhibited and not expressed anymore, the cells die," said Loughran. "It validates our model."

It is still unclear as to what prevents the T-cells from dying off, though researchers suspect that a chronic virus might be continually activating the cells. However, there is no clear evidence for the theory, but network modeling may be a start.

According to Albert, such models could save time and money in pointing out promising candidates – genes and proteins – for drug delivery. "Our model provides a shortlist of therapeutic targets that can be manipulated with drugs to kill off leukemia cells," she added.

The Penn State researchers are also looking to harness errant behavior of the T-cells in combating other deadly diseases.

"In complicated infections like HIV, and in diseases such as cancer, you need to have an immune response that comprises both antibodies and cytotoxic T-cells," explained Loughran. "The problem is nobody has been able to generate a long-lived cytotoxic T-cell response in normal people."

Since T-cells in people suffering from large granular lymphocyte leukemia are active, long-lived, and function like killer T-cells, Loughran believes that if his team can unlock the secret behind these cells' longevity, then T-cells in normal healthy people could be equipped with the same ability to fend off other deadly infections.

"The key is to find the master control switches that keep these cells alive," said Loughran, whose work is funded by the National Institutes of Health and the National Science Foundation. "And maybe those could be blocked directly."

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>