Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Signpost for Chemical Snaps

Copper ions as morphogens for the formation of polymer films by click chemistry

Scientists are envious of nature because of its ability to build up highly complex structures like organs and tissues in an ordered fashion without any problem; it takes a great deal of effort for scientists to produce defined microscale structures.

Pierre Schaaf and a team of scientists from Strasbourg have now imitated a few of nature¡¯s tricks in order to get a polymer film to ¡°grow¡± onto a surface. As the researchers report in the journal Angewandte Chemie, they used morphogens as nature does. These signal molecules show a reaction which way it should go.

The growth of our bones, seashells, or the complicated forms of diatoms, requires the processes involved in biomineralization to occur along precisely controlled tracks. Molecules cannot simply be allowed to react in an uncontrolled fashion as soon as they encounter each other.

In order for a complex organism to develop, every individual cell must know where it is located within a growing organ. Special signal molecules called morphogens inform the cell. They are formed in a specific location and then spread out into the surrounding tissue. This results in concentration gradients, which the cells can use to ¡°orient¡± themselves.

Schaaf and his co-workers chose a similar strategy to form thin films on a substrate. They also used a sort of morphogen to steer the process. The reactants involved were polymers, one containing azide groups (¨CN3) and the other with alkyne groups (¨CC¡ÔCH) as side chains. In the presence of positively charged copper ions (CuI), these groups react with each other to form a carbon- and nitrogen-containing five-membered ring, crosslinking the polymers. This type of reaction is called ¡°click chemistry¡±, because the reaction partners simply snap together.

In a solution containing both click partner and CuI ions, the reaction would immediately proceed at random. This would not result in a thin polymer film. The scientists¡¯ idea was thus to place the CuI ions as a morphogen only on the surface to be coated. Their approach was to place CuII ions in the solution. They then applied an electric voltage to the surface. When CuII ions come into contact with this surface, they take an electron to become CuI. These are thus primarily to be found on the surface. Where there are CuI ions, the click reaction can proceed; the polymers only crosslink into a continuous film on the surface. The magnitude of the applied voltage can be used to control the number of CuI ions and thus the thickness of the film.

Author: Pierre Schaaf, Institut Charles Sadron, Strasbourg (France),
Title: Electrochemically Triggered Film Formation by Click Chemistry
Angewandte Chemie International Edition 2011, 50, No. 19, 4374¨C4377, Permalink to the article:

Pierre Schaaf | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>