Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signpost for Chemical Snaps

29.04.2011
Copper ions as morphogens for the formation of polymer films by click chemistry

Scientists are envious of nature because of its ability to build up highly complex structures like organs and tissues in an ordered fashion without any problem; it takes a great deal of effort for scientists to produce defined microscale structures.

Pierre Schaaf and a team of scientists from Strasbourg have now imitated a few of nature¡¯s tricks in order to get a polymer film to ¡°grow¡± onto a surface. As the researchers report in the journal Angewandte Chemie, they used morphogens as nature does. These signal molecules show a reaction which way it should go.

The growth of our bones, seashells, or the complicated forms of diatoms, requires the processes involved in biomineralization to occur along precisely controlled tracks. Molecules cannot simply be allowed to react in an uncontrolled fashion as soon as they encounter each other.

In order for a complex organism to develop, every individual cell must know where it is located within a growing organ. Special signal molecules called morphogens inform the cell. They are formed in a specific location and then spread out into the surrounding tissue. This results in concentration gradients, which the cells can use to ¡°orient¡± themselves.

Schaaf and his co-workers chose a similar strategy to form thin films on a substrate. They also used a sort of morphogen to steer the process. The reactants involved were polymers, one containing azide groups (¨CN3) and the other with alkyne groups (¨CC¡ÔCH) as side chains. In the presence of positively charged copper ions (CuI), these groups react with each other to form a carbon- and nitrogen-containing five-membered ring, crosslinking the polymers. This type of reaction is called ¡°click chemistry¡±, because the reaction partners simply snap together.

In a solution containing both click partner and CuI ions, the reaction would immediately proceed at random. This would not result in a thin polymer film. The scientists¡¯ idea was thus to place the CuI ions as a morphogen only on the surface to be coated. Their approach was to place CuII ions in the solution. They then applied an electric voltage to the surface. When CuII ions come into contact with this surface, they take an electron to become CuI. These are thus primarily to be found on the surface. Where there are CuI ions, the click reaction can proceed; the polymers only crosslink into a continuous film on the surface. The magnitude of the applied voltage can be used to control the number of CuI ions and thus the thickness of the film.

Author: Pierre Schaaf, Institut Charles Sadron, Strasbourg (France),
http://www-ics.u-strasbg.fr/spip.php?article284
Title: Electrochemically Triggered Film Formation by Click Chemistry
Angewandte Chemie International Edition 2011, 50, No. 19, 4374¨C4377, Permalink to the article: http://dx.doi.org/10.1002/anie.201007436

Pierre Schaaf | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www-ics.u-strasbg.fr/spip.php?article284
http://dx.doi.org/10.1002/anie.201007436

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>