Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signpost for Chemical Snaps

29.04.2011
Copper ions as morphogens for the formation of polymer films by click chemistry

Scientists are envious of nature because of its ability to build up highly complex structures like organs and tissues in an ordered fashion without any problem; it takes a great deal of effort for scientists to produce defined microscale structures.

Pierre Schaaf and a team of scientists from Strasbourg have now imitated a few of nature¡¯s tricks in order to get a polymer film to ¡°grow¡± onto a surface. As the researchers report in the journal Angewandte Chemie, they used morphogens as nature does. These signal molecules show a reaction which way it should go.

The growth of our bones, seashells, or the complicated forms of diatoms, requires the processes involved in biomineralization to occur along precisely controlled tracks. Molecules cannot simply be allowed to react in an uncontrolled fashion as soon as they encounter each other.

In order for a complex organism to develop, every individual cell must know where it is located within a growing organ. Special signal molecules called morphogens inform the cell. They are formed in a specific location and then spread out into the surrounding tissue. This results in concentration gradients, which the cells can use to ¡°orient¡± themselves.

Schaaf and his co-workers chose a similar strategy to form thin films on a substrate. They also used a sort of morphogen to steer the process. The reactants involved were polymers, one containing azide groups (¨CN3) and the other with alkyne groups (¨CC¡ÔCH) as side chains. In the presence of positively charged copper ions (CuI), these groups react with each other to form a carbon- and nitrogen-containing five-membered ring, crosslinking the polymers. This type of reaction is called ¡°click chemistry¡±, because the reaction partners simply snap together.

In a solution containing both click partner and CuI ions, the reaction would immediately proceed at random. This would not result in a thin polymer film. The scientists¡¯ idea was thus to place the CuI ions as a morphogen only on the surface to be coated. Their approach was to place CuII ions in the solution. They then applied an electric voltage to the surface. When CuII ions come into contact with this surface, they take an electron to become CuI. These are thus primarily to be found on the surface. Where there are CuI ions, the click reaction can proceed; the polymers only crosslink into a continuous film on the surface. The magnitude of the applied voltage can be used to control the number of CuI ions and thus the thickness of the film.

Author: Pierre Schaaf, Institut Charles Sadron, Strasbourg (France),
http://www-ics.u-strasbg.fr/spip.php?article284
Title: Electrochemically Triggered Film Formation by Click Chemistry
Angewandte Chemie International Edition 2011, 50, No. 19, 4374¨C4377, Permalink to the article: http://dx.doi.org/10.1002/anie.201007436

Pierre Schaaf | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www-ics.u-strasbg.fr/spip.php?article284
http://dx.doi.org/10.1002/anie.201007436

More articles from Life Sciences:

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>