Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signals from the blood of the mother enhance the maturation of the brain

16.09.2008
Neuroscientists characterize the signalling chain

The maturation of the brain of unborn infants is given a gentle “prod” by its mother. A protein messenger from the mother’s blood is transferred to the embryo and stimulates the growth and wiring of the neurons in the brain.

Neuroscientists in Bochum (Prof. Petra Wahle, Developmental Neurobiology at the Ruhr University), Magdeburg (Dr. Peter Landgraf, Prof. Michael R. Kreutz) and in Münster (Prof. Hans-Christian Pape) performed a detailed investigation of this signal transduction pathway and identified those molecules in the brain of the embryo that interact with the maternal messenger. This achievement delivers an important step towards the comprehension of this signal transduction pathway. Their research work is published in the current volume of the Journal of Biological Chemistry.

The maternal immune system produces a signal molecule

In previous studies, the scientists had already managed to isolate the polypeptide messenger that plays a decisive role in the brain development of embryos and newborn infants, namely the “survival promoting peptide / Y P30.” Y-P30 enhances the survival of thalamic (diencephalic) neurons and promotes the neuritogenic activity of cerebellar and thalamic neurons. Prof. Wahle explained that it is “interesting to note that Y-P30 is not synthesized directly within the developing infant brain, but is produced by specific immune cells of the mother’s blood during pregnancy.

From there it passes the blood-placenta barrier and accumulates - inter alia - in neurons of the cerebral cortex of the embryo.” (Landgraf P, Sieg F, Wahle P, Meyer G, Kreutz MR, Pape HC (2005) “A maternal blood-borne factor promotes survival of the developing thalamus”. FASEB Journal 19:225-227.”) The scientists were able to provide evidence of the peptide in the brain of fetuses of mice and humans, and of postnatal rats.

Messengers need receptors to be effective

It was of particular interest to identify possible receptors for Y-P30 to enable investigation of the biological role of the messenger and to clarify its mechanisms of action. The research team has succeeded in identifying the molecules that interact with Y-P30, namely pleiotrophin, a protein within the extracellular space, and so-called syndecans, i.e. proteins on the cell surface. It was known that both binding partners could promote the growth of neurons. The scientists were now able to show the Y-P30 enhances the development of the pleiotrophin/syndecan signaling complex and stabilizes it.

The signaling activity within the neurons is increased and enhances the neuritogenic activity. Prof. Petra Wahle and Suvarna Wagh, PhD student in research training group 736, were able to demonstrate a direct action of the Y-P30 peptide on the growth of axons (neurites). The signal-receptor-complex comprised of Y-P30, pleiotrophin und syndecan thus appears to enhance the development of the axonal projection tracts and the wiring of the brain.

Prof. Dr. Petra Wahle | alfa
Further information:
http://www.rub.de

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>