Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sibling cooperation in earwig families provides clues to the early evolution of social behavior

15.04.2014

Biologists from Mainz and Basel investigate food sharing among siblings in 125 earwig families

Looking at the question of how social behavior has developed over the course of evolution, scientists from the universities in Mainz and Basel have gained new insights from the study of earwigs. "Young earwig offspring don't simply compete for food.


A female European earwig both cleans and transports her offspring

photo/©: Joël Meunier, JGU

Rather the siblings share what is available amongst themselves, especially when the mother is absent," explained Dr. Joël Meunier of the Evolutionary Biology section of the Institute of Zoology at Johannes Gutenberg University of Mainz (JGU). The team of biologists from Mainz University and the University of Basel investigated the interactions between siblings of the European earwig (Forficula auricularia).

To date, insects have been only little studied with regard to cooperative behavior between siblings, except in the case of eusocial species, such as bees and ants. The European earwig provides, as the research project shows, valuable clues to the origins of social behavior patterns.

... more about:
»Biology »Evolutionary »earwigs »eggs »offspring »siblings

The animal kingdom has an unbelievable diversity of forms of social life. These encompass situations such as the temporary aggregation of single individuals to social communities based on the division of labor. For evolutionary biologists this poses question of how these ubiquitous social life forms emerged despite the accompanying disadvantages of competition and conflict among group members. When it comes to birds, for example, the competition among siblings is often so fierce that some of the younger animals die.

"In the case of earwigs, we have a system that closely resembles the primitive conditions of family life," said Jos Kramer, a doctoral candidate on Meunier’s team. In fall, female earwigs lay on average 40 to 45 eggs and stay over the winter with them. The mothers watch the eggs, keep them clean by licking off fungi, for example, and carry them back and forth in the nest. Once the young, the so-called nymphs, emerge, they stay in the nest for few weeks with their mothers, even if the presence of this latter is no longer necessary for their survival. Indeed, the nymphs could leave the family unit soon after emergence and take care of themselves from then on.

These sub-social forms of life provide the ideal field of research for investigating under what conditions the advantages of cooperation in a family unit outweigh the disadvantages. For this purpose, the scientists from Mainz and Basel provided 125 earwig families with dyed pollen and observed if and how the food was divided amongst the siblings.

"We found that siblings behave cooperatively and share food and that this behavior occurs much more frequently when the mother is not present and is not feeding her offspring herself," stated Meunier. This may at least partly explain why mobile offspring stay with the family group despite the disadvantages associated with this. In addition, this insight provides an important clue to the early development of social behavior. The previously largely ignored aspect of sibling cooperation is possibly one of the key factors that promoted the transition from solitary to social life.

Images:
http://www.uni-mainz.de/bilder_presse/10_zoologie_ohrwuermer_familie.jpg
A female European earwig (Forficula auricularia) with her young
photo: Joël Meunier

http://www.uni-mainz.de/bilder_presse/10_zoologie_ohrwuermer_mutter_nymphen.jpg
A female European earwig both cleans and transports her offspring
photo: Joël Meunier

Publication:
Joachim Falk et al.
Sibling Cooperation in Earwig Families Provides Insights into the Early Evolution of Social Life
The American Naturalist, 11 February 2014
DOI: 10.1086/675364

Further information:
Dr. Joël Meunier
Evolutionary Biology
Institute of Zoology
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-27852
fax +49 6131 39-27850
e-mail: meunier@uni-mainz.de
http://www.bio.uni-mainz.de/zoo/evobio/322_ENG_HTML.php

Weitere Informationen:

http://www.bio.uni-mainz.de/zoo/evobio/217_DEU_HTML.php ;
http://www.jstor.org/stable/10.1086/675364 (Article)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Biology Evolutionary earwigs eggs offspring siblings

More articles from Life Sciences:

nachricht How to become a T follicular helper cell
31.07.2015 | La Jolla Institute for Allergy and Immunology

nachricht Heating and cooling with light leads to ultrafast DNA diagnostics
31.07.2015 | University of California - Berkeley

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>