Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sibling cooperation in earwig families provides clues to the early evolution of social behavior

15.04.2014

Biologists from Mainz and Basel investigate food sharing among siblings in 125 earwig families

Looking at the question of how social behavior has developed over the course of evolution, scientists from the universities in Mainz and Basel have gained new insights from the study of earwigs. "Young earwig offspring don't simply compete for food.


A female European earwig both cleans and transports her offspring

photo/©: Joël Meunier, JGU

Rather the siblings share what is available amongst themselves, especially when the mother is absent," explained Dr. Joël Meunier of the Evolutionary Biology section of the Institute of Zoology at Johannes Gutenberg University of Mainz (JGU). The team of biologists from Mainz University and the University of Basel investigated the interactions between siblings of the European earwig (Forficula auricularia).

To date, insects have been only little studied with regard to cooperative behavior between siblings, except in the case of eusocial species, such as bees and ants. The European earwig provides, as the research project shows, valuable clues to the origins of social behavior patterns.

... more about:
»Biology »Evolutionary »earwigs »eggs »offspring »siblings

The animal kingdom has an unbelievable diversity of forms of social life. These encompass situations such as the temporary aggregation of single individuals to social communities based on the division of labor. For evolutionary biologists this poses question of how these ubiquitous social life forms emerged despite the accompanying disadvantages of competition and conflict among group members. When it comes to birds, for example, the competition among siblings is often so fierce that some of the younger animals die.

"In the case of earwigs, we have a system that closely resembles the primitive conditions of family life," said Jos Kramer, a doctoral candidate on Meunier’s team. In fall, female earwigs lay on average 40 to 45 eggs and stay over the winter with them. The mothers watch the eggs, keep them clean by licking off fungi, for example, and carry them back and forth in the nest. Once the young, the so-called nymphs, emerge, they stay in the nest for few weeks with their mothers, even if the presence of this latter is no longer necessary for their survival. Indeed, the nymphs could leave the family unit soon after emergence and take care of themselves from then on.

These sub-social forms of life provide the ideal field of research for investigating under what conditions the advantages of cooperation in a family unit outweigh the disadvantages. For this purpose, the scientists from Mainz and Basel provided 125 earwig families with dyed pollen and observed if and how the food was divided amongst the siblings.

"We found that siblings behave cooperatively and share food and that this behavior occurs much more frequently when the mother is not present and is not feeding her offspring herself," stated Meunier. This may at least partly explain why mobile offspring stay with the family group despite the disadvantages associated with this. In addition, this insight provides an important clue to the early development of social behavior. The previously largely ignored aspect of sibling cooperation is possibly one of the key factors that promoted the transition from solitary to social life.

Images:
http://www.uni-mainz.de/bilder_presse/10_zoologie_ohrwuermer_familie.jpg
A female European earwig (Forficula auricularia) with her young
photo: Joël Meunier

http://www.uni-mainz.de/bilder_presse/10_zoologie_ohrwuermer_mutter_nymphen.jpg
A female European earwig both cleans and transports her offspring
photo: Joël Meunier

Publication:
Joachim Falk et al.
Sibling Cooperation in Earwig Families Provides Insights into the Early Evolution of Social Life
The American Naturalist, 11 February 2014
DOI: 10.1086/675364

Further information:
Dr. Joël Meunier
Evolutionary Biology
Institute of Zoology
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-27852
fax +49 6131 39-27850
e-mail: meunier@uni-mainz.de
http://www.bio.uni-mainz.de/zoo/evobio/322_ENG_HTML.php

Weitere Informationen:

http://www.bio.uni-mainz.de/zoo/evobio/217_DEU_HTML.php ;
http://www.jstor.org/stable/10.1086/675364 (Article)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Biology Evolutionary earwigs eggs offspring siblings

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>