Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sibling cooperation in earwig families provides clues to the early evolution of social behavior

15.04.2014

Biologists from Mainz and Basel investigate food sharing among siblings in 125 earwig families

Looking at the question of how social behavior has developed over the course of evolution, scientists from the universities in Mainz and Basel have gained new insights from the study of earwigs. "Young earwig offspring don't simply compete for food.


A female European earwig both cleans and transports her offspring

photo/©: Joël Meunier, JGU

Rather the siblings share what is available amongst themselves, especially when the mother is absent," explained Dr. Joël Meunier of the Evolutionary Biology section of the Institute of Zoology at Johannes Gutenberg University of Mainz (JGU). The team of biologists from Mainz University and the University of Basel investigated the interactions between siblings of the European earwig (Forficula auricularia).

To date, insects have been only little studied with regard to cooperative behavior between siblings, except in the case of eusocial species, such as bees and ants. The European earwig provides, as the research project shows, valuable clues to the origins of social behavior patterns.

... more about:
»Biology »Evolutionary »earwigs »eggs »offspring »siblings

The animal kingdom has an unbelievable diversity of forms of social life. These encompass situations such as the temporary aggregation of single individuals to social communities based on the division of labor. For evolutionary biologists this poses question of how these ubiquitous social life forms emerged despite the accompanying disadvantages of competition and conflict among group members. When it comes to birds, for example, the competition among siblings is often so fierce that some of the younger animals die.

"In the case of earwigs, we have a system that closely resembles the primitive conditions of family life," said Jos Kramer, a doctoral candidate on Meunier’s team. In fall, female earwigs lay on average 40 to 45 eggs and stay over the winter with them. The mothers watch the eggs, keep them clean by licking off fungi, for example, and carry them back and forth in the nest. Once the young, the so-called nymphs, emerge, they stay in the nest for few weeks with their mothers, even if the presence of this latter is no longer necessary for their survival. Indeed, the nymphs could leave the family unit soon after emergence and take care of themselves from then on.

These sub-social forms of life provide the ideal field of research for investigating under what conditions the advantages of cooperation in a family unit outweigh the disadvantages. For this purpose, the scientists from Mainz and Basel provided 125 earwig families with dyed pollen and observed if and how the food was divided amongst the siblings.

"We found that siblings behave cooperatively and share food and that this behavior occurs much more frequently when the mother is not present and is not feeding her offspring herself," stated Meunier. This may at least partly explain why mobile offspring stay with the family group despite the disadvantages associated with this. In addition, this insight provides an important clue to the early development of social behavior. The previously largely ignored aspect of sibling cooperation is possibly one of the key factors that promoted the transition from solitary to social life.

Images:
http://www.uni-mainz.de/bilder_presse/10_zoologie_ohrwuermer_familie.jpg
A female European earwig (Forficula auricularia) with her young
photo: Joël Meunier

http://www.uni-mainz.de/bilder_presse/10_zoologie_ohrwuermer_mutter_nymphen.jpg
A female European earwig both cleans and transports her offspring
photo: Joël Meunier

Publication:
Joachim Falk et al.
Sibling Cooperation in Earwig Families Provides Insights into the Early Evolution of Social Life
The American Naturalist, 11 February 2014
DOI: 10.1086/675364

Further information:
Dr. Joël Meunier
Evolutionary Biology
Institute of Zoology
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-27852
fax +49 6131 39-27850
e-mail: meunier@uni-mainz.de
http://www.bio.uni-mainz.de/zoo/evobio/322_ENG_HTML.php

Weitere Informationen:

http://www.bio.uni-mainz.de/zoo/evobio/217_DEU_HTML.php ;
http://www.jstor.org/stable/10.1086/675364 (Article)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Biology Evolutionary earwigs eggs offspring siblings

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>