Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shuttle mice to boost disease research

01.11.2010
Experiment on last flight of Discovery will probe spaceflight-induced immune-system impairment

When the space shuttle Discovery lifts off on its final flight Nov. 2, its six astronauts will be joined by 16 rodent passengers on a historic mission of their own.

Riding in special self-contained modules that automatically supply them with food and water, the mice will be part of a long-term NASA effort aimed at understanding why spaceflight makes humans more vulnerable to infection by viruses and bacteria.

The agency has studied the phenomenon aboard its space shuttles for more than 25 years, collecting data from laboratory animals and astronauts themselves. The mouse experiment — a collaboration between teams at the University of Texas Medical Branch at Galveston and NASA's Ames Research Center in Mountain View, Calif.— will be the final immunology investigation planned for the shuttle program.

"Since the Apollo missions, we have had evidence that astronauts have increased susceptibility to infections during flight and immediately post-flight — they seem more vulnerable to cold and flu viruses and urinary tract infections, and viruses like Epstein-Barr, which infect most people and then remain dormant, can reactivate under the stress of spaceflight," said Dr. Roberto Garofalo, a professor at UTMB Health and principal investigator for the project. "We want to discover what triggers this increased susceptibility to infection, with the goal both of protecting the astronauts themselves and people with more vulnerable immune systems here on Earth, such as the elderly and young children."

The mice aboard Discovery will be in orbit for 11 days, during which time shuttle astronauts will perform daily checks on their health and well-being. Within two hours of the shuttle's return to Earth, eight of the animals will be infected with respiratory syncytial virus — a pathogen that infects almost all human children by age two and ordinarily causes a relatively harmless cold-like upper respiratory disease. In some children, however, the infection spreads to the lungs, where the inflammation it generates causes coughing, wheezing and extreme difficulty in breathing.

Another group of mice kept in nearly identical conditions on the ground will also be exposed to the virus. Garofalo's team will conduct genetic and protein studies of the lung and nasal tissues of both sets of mice, evaluating lung inflammation, viral replication and other key factors related to RSV infection in mice.

"We have substantial experience using mice to study immune response to RSV infection, and that will enable us to look at all the aspects of the immune responses of these mice as well as the pathological manifestations of the disease, looking at ways in which the space environment affects this respiratory infection," Garofalo said.

Understanding how spaceflight impairs the immune system and finding ways to make sure that infection doesn't threaten the health of space travelers are expected to become increasingly important, as NASA plans human expeditions beyond the relative safety of Earth orbit — to Mars, for example, or the asteroids. The developing commercial spaceflight industry, which hopes to launch large numbers of private citizens into orbit in the near future, also has a stake in ensuring that its passengers stay safe and healthy.

Despite the shuttle program's end, Garofalo said, immune system experiments in space may well continue on the International Space Station.

"The space environment incorporates many factors that we know affect the immune system — microgravity, radiation, even different nutritional standards — all acting in a relatively short period of time," Garofalo said. "The space station provides a unique environment for generating answers to fundamental questions about the human immune system. Those answers will benefit people here on Earth, and there's been a lot of interest in pursuing them."

ABOUT UTMB Health: Established in 1891, Texas' first academic health center comprises four health sciences schools, three institutes for advanced study, a research enterprise that includes one of only two national laboratories dedicated to the safe study of infectious threats to human health, and a health system offering a full range of primary and specialized medical services throughout Galveston County and the Texas Gulf Coast region. UTMB Health is a component of the University of Texas System.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>