Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No need to shrink guts to have a larger brain

10.11.2011
The so-called expensive-tissue hypothesis, which suggests a trade-off between the size of the brain and the size of the digestive tract, has been challenged by researchers at the University of Zurich.

They have shown that brains in mammals have grown over the course of evolution without the digestive organs having to become smaller. The researchers have further demonstrated that the potential to store fat often goes hand in hand with relatively small brains – except in humans, who owe their increased energy intake and correspondingly large brain to communal child care, better diet and their ability to walk upright.

Brain tissue is a major consumer of energy in the body. If an animal species evolves a larger brain than its ancestors, the increased need for energy can be met by either obtaining additional sources of food or by a trade-off with other functions in the body. In humans, the brain is three times larger and thus requires a lot more energy than that of our closest relatives, the great apes. Until now, the generally accepted theory for this condition was that early humans were able to redirect energy to their brains thanks to a reduced digestive tract. Zurich primatologists, however, have now disproved this theory, demonstrating that mammals with relatively large brains actually tend to have a somewhat bigger digestive tract.

Ana Navarrete, the first author on the study published today in Nature, has studied hundreds of carcasses from zoos and museums. “The data set contains a hundred species, from the stag to the shrew,” explains the PhD student. The scientists involved in the study then compared the size of the brain with the fat-free body mass. Senior author Karin Isler stresses that, “it is extremely important to take an animal’s adipose deposits into consideration as, in some species, these constitute up to half of the body mass in autumn.” But even compared with fat-free body mass, the size of the brain does not correlate negatively with the mass of other organs.

More fat, smaller brain
Nevertheless, the storage of fat plays a key role in brain size evolution. The researchers discovered another rather surprising correlation: the more fat an animal species can store, the smaller its brain. Although adipose tissue itself does not use much energy, fat animals need a lot of energy to carry extra weight, especially when climbing or running. This energy is then lacking for potential brain expansion. “It seems that large adipose deposits often come at the expense of mental flexibility,” says Karin Isler. “We humans are an exception, along with whales and seals – probably because, like swimming, our bipedalism doesn’t require much more energy even when we are a bit heavier.”
Interplay of energetic factors
The rapid increase in brain size and the associated increase in energy intake began about two million years ago in the genus Homo. Based on their extensive studies of animals, the Zurich researchers propose a scenario in which several energetic factors are involved: “In order to stabilize the brain’s energy supply on a higher level, prehistoric man needed an all-year, high-quality source of food, such as underground tubers or meat. As they no longer climbed every day, they perfected the art of walking upright. Even more important, however, is communal child care,” says Karin Isler. Because ape mothers do not receive any help, they can only raise an offspring every five to eight years. Thanks to communal care for mothers and children, humans can afford both: a huge brain and more frequent offspring.
Literature:
Ana F. Navarrete, Carel P. van Schaik, and Karin Isler. Energetics and the evolution of human brain size. Nature. November 9, 2011. doi:10.1038/nature10629
Contact information:
Dr. Karin Isler
Anthropological Institute and Museum
University of Zurich
Phone: +41 44 635 54 01
E-mail: kisler@aim.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>