Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shilatifard and colleagues clarify the enzymatic activity of factors involved in childhood leukemia

07.05.2009
The Stowers Institute's Shilatifard Lab and colleagues have provided new insight into the molecular basis for H3K4 methylation, an activity associated with the MLL protein found in chromosomal translocation-based aggressive infant acute leukemias. Studies describing these collaborative studies were published online by Molecular and Cellular Biology and Cell this week.

Many hematological malignancies are associated with a genetic error in which a portion of one chromosome has broken and fused with another chromosome. This inappropriate fusion of chromosomal DNA is referred to as chromosomal translocation.

A large proportion of infant leukemias are the result of chromosomal translocations in the Mixed Lineage Leukemia (MLL) gene. Children suffering from these chromosomal translocations have low survival rates and face treatment options that have devastating side effects.

The Stowers Institute's Shilatifard Lab studies chromosomal translocations related to the MLL gene. Several years ago, they identified a molecular complex – COMPASS – containing the yeast homologue of the human MLL. COMPASS was the first H3K4 methylase to be identified, and human MLL is also found in COMPASS-like complexes capable of methylating H3K4, a posttranslational modification marking chromosomes for transcription.

"We observed that the addition of three methyl groups (a process known as trimethylation) on the fourth lysine of H3K4 is regulated by the active site of the yeast equivalent of the MLL protein complex, COMPASS," said Yoh-hei Takahashi, Ph.D., Postdoctoral Research Associate and first author on the publication in Molecular and Cellular Biology. "We also demonstrated that a single residue (Tyr1052) functions with a known subunit of COMPASS (Cps40) to regulate the trimethylation of H3K4."

"These are exciting findings because each of these are significant steps that lead to unraveling how translocations cause leukemia and how we can develop treatments that better target and cure leukemia," said Ali Shilatifard, Ph.D., Investigator and senior author on the publication.

Additional contributing authors to the study published in Molecular and Cellular Biology from the Stowers Institute include Jung Shin Lee, Ph.D., Postdoctoral Research Associate; Selene Swanson, Research Specialist II; Anita Saraf, M.D., Ph.D., Senior Proteomics Scientist; Laurence Florens, Ph.D., Managing Director of Proteomics; and Michael Washburn, Ph.D., Director of Proteomics Center. Raymond Trievel, Ph.D., of the University of Michigan also contributed.

The Shilatifard Lab also has collaborated with Robert Roeder and colleagues at The Rockefeller University on a publication in Cell that sheds new light on the process of communication between histones known as histone crosstalk. This process has been a topic of interest to the Shilatifard Lab for many years, and they have made a number of important contributions to its understanding.

Through a series of laborious biochemical and genetic screens in yeast and over five years of work, the Shilatifard Lab identified the molecular machinery required for proper H3K4 methylation by COMPASS. This includes the modification of histone H2B by attaching a single ubiquitin – a regulatory protein that is very similar from species to species – by the Rad6/Bre1 complex in a process called histone crosstalk. In the Cell publication, the team demonstrated that human Rad6/Bre1 also functions in histone crosstalk as it does in yeast.

"This study demonstrates the awesome power of simple genetic and biochemical model systems such as yeast in deciphering molecular machinery involved in chromatin biology and how yeast can play a role as a template in identifying the human counterparts of these proteins," said Dr. Shilatifard. "Indeed, as reported this week in Cell, human Rad6 can functionally replace yeast Rad6, and H2B monoubiquitination in humans functions by the same histone crosstalk mechanism as it does in yeast, demonstrating the conservation in this system from yeast to humans."

Jung-Shin Lee, Ph.D., Postdoctoral Research Associate in the Shilatifard Lab also contributed to this paper. Authors from The Rockefeller University include Jaehoon Kim, Ph.D., Mohamed Guermah, Robert McGinty, Zhanyun Tang, Ph.D., Thomas Milne, Ph.D., and Tom Muir, Ph.D.

Dr. Shilatifard joined the Stowers Institute in 2007 from the Saint Louis University School of Medicine. Learn more about his work at www.stowers.org/labs/ShilatifardLab.asp.

About the Stowers Institute for Medical Research

Housed in a 600,000 square-foot state-of-the-art facility on a 10-acre campus in the heart of Kansas City, Missouri, the Stowers Institute for Medical Research conducts basic research on fundamental processes of cellular life. Through its commitment to collaborative research and the use of cutting-edge technology, the Institute seeks more effective means of preventing, treating, and curing disease. Jim and Virginia Stowers endowed the Institute with gifts totaling $2 billion. The endowment resides in a large cash reserve and in substantial ownership of American Century Investments, a privately held mutual fund company that represents exceptional value for the Institute's future.

Marie Jennings | EurekAlert!
Further information:
http://www.stowers.org

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>