Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Shedding Light on Bacteria


The tiny cyanobacteria use the principle of the lens in the human eye to perceive light direction

Scientists have been trying to figure out how it is possible for bacteria to perceive light and react to it ever since they started using microscopes 300 years ago. An international team led by the Freiburg biologist Prof. Dr. Annegret Wilde has now solved this riddle: In studies on so-called cyanobacteria, the researchers demonstrated that these tiny organisms of only a few micrometers in size move toward a light source using the same principle of the lens in the human eye. The study was published in the journal eLife.

The light hits the round cells of the bacterium, where it is focused by a microscopically tiny lens. This creates a focal point on the opposite side of the cell. Source: Nils Schürgers

Cyanobacteria have populated Earth for 2.5 billion years and can be found anywhere where there’s light: in ice, deserts, rivers, and lakes, as well as in the walls of buildings and in aquariums. They use light to produce energy by the process of oxygenicphotosynthesis .

In the oceans, which cover roughly 70 percent of Earth’s surface, oxygen-producing cyanobacteria are among the most important photosynthetically active organisms and are thus a central component of the biosphere. The Wilde group together with an international team discovered that cyanobacteria, which can move directly and precisely toward a light source, use their micro-optic properties to identify where the light is coming from.

The light hits the surface of the round unicellular organisms, where it is focused as if by a microscopically tiny lens. This creates a focal point on the opposite side of the cell. The cells then move away from this point of high light intensity, causing them ultimately to move toward the natural light source.

All previous attempts to explain bacterial phototaxis, the process by which bacteria move toward light, have failed because these organisms, which measure only a few lengths of a light wave, were thought to be too small to perceive differences in light between the front and back side of the cell.

Since the entire bacterium functions like a lens, however, the organisms can concentrate light, creating a pronounced light gradient within the cell. “This physical principle is actually hardly different from the way light is focused in the lenses of our eyes,” explains Wilde. “We now want to conduct further joint projects to investigate the concentration of light in microscopic organisms that do not necessarily need to have the shape of a round lens but, for instance, can also concentrate light like an optical fiber.”

A better understanding of the microoptic properties could lead to insight on the extent to which the structure and form of cells and biofilms influence the process of light collection. This knowledge could be used in the future to construct custom-made photobioreactors or to improve new types of solar cells.

Annegret Wilde has served since 2012 as professor of molecular genetics at the University of Freiburg. The study included scientists from the Institute of Biology III as well as the university’s Freiburg Institute for Advanced Studies (FRIAS). The team collaborated strongly with researchers from Karlsruhe and London, England. A key participant in the study was Prof. Dr. Conrad Mullineaux from London who visited Freiburg as an FRIAS external fellow.

Original publication:
N. Schuergers, T. Lenn, R. Kampmann, M. V. Meissner, T. Esteves, M. Temerinac-Ott, J. G. Korvink, A. R. Lowe, C. W. Mullineaux, A. Wilde (2016): Cyanobacteria use micro-optics to sense light direction. In: eLife. DOI: 10.7554/eLife.12620

Prof. Dr. Annegret Wilde
Institute of Biology III
University of Freiburg
Phone: +49 (0)761/203-97828

The light hits the round cells of the bacterium, where it is focused by a microscopically tiny lens. This creates a focal point on the opposite side of the cell. Source: Nils Schürgers

Weitere Informationen:

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>