Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sexy or Repulsive? Butterfly Wings Can Be Both To Mates and Predators

03.04.2009
Butterflies seem able to both attract mates and ward off predators using different sides of their wings, according to new research by Yale University biologists.

Trying to find the balance between these two crucial behaviors is one of nature’s oldest dilemmas, according to Jeffrey Oliver, a postdoctoral associate in Yale’s Department of Ecology and Evolutionary Biology and lead author on the study, which appears online today in the journal Proceedings of the Royal Society B: Biological Sciences.

"You want to be noticeable and desirable for mates, but other onlookers, including predators, are paying attention to those signals as well."

Oliver was interested in whether the eyespots on the upperside of butterflies’ wings – specifically, those of bush brown butterflies – serve a different purpose than the ones on the underside. Ever since Darwin’s time, biologists (including Darwin himself) have postulated whether the upperside patterns could be used to attract mates, while at the same time, those on the underside could help avoid predators.

Working with Yale biologist Antónia Monteiro, Oliver used new tools to put the old theory to the test. Using different evolutionary models, he found that the eyespots on the upperside of the butterflies’ wings appear to evolve much more quickly than those on the underside, meaning they appear and disappear frequently through the course of evolution. The result is consistent with the theory that these are used to attract mates, as signals used for sexual selection tend to evolve faster than others.

The study is the first to employ evolutionary history models to show that a species can use the same signal – in this case, eyespots – on different areas of its body to communicate different messages.

While butterflies often sit with their wings folded together and their undersides showing, they can flash a hidden eyespot on their forewings to confuse predators and give themselves time to escape. Exactly how the upperside eyespots communicate with potential mates is not fully understood, Oliver said, although it’s thought they might help butterflies identify each other, which would help keep different species from cross-mating.

Next, Oliver will use longer evolutionary timescales to study where and how eyespots evolved, as well as whether they developed all at once, or independently over time.

Other authors of the paper include Kendra Robertson (State University of New York at Buffalo).

Suzanne Taylor Muzzin | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>