Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sexual reproduction only second choice for powdery mildew

15.07.2013
Genetically, powdery mildew is perfectly adapted to its host plants. Evidently, sexual reproduction and new combinations of genetic material usually prove disadvantageous for the fungus.

Asexual reproduction, however, is considerably more successful for mildew, as plant biologists from the University of Zurich and the Max Planck Institute for Plant Breeding Research in Cologne demonstrate. Nonetheless, the fungus still allows itself a sexual reproduction cycle.


Powdery mildew on young wheat plants.
Picture: UZH

Powdery mildew is one of the most dreaded plant diseases: The parasitic fungus afflicts crops such as wheat and barley and is responsible for large harvest shortfalls every year. Beat Keller and Thomas Wicker, both plant biologists from the University of Zurich, and their team have been analyzing the genetic material of wheat mildew varieties from Switzerland, England and Israel while the team headed by Paul Schulze-Lefert at the Max Planck Institute for Plant Breeding Research in Cologne studies the genetic material of barley mildew.

The results recently published in Nature Genetics and PNAS respectively unveil a long shared history of co-evolution between the host and the pest and the unexpected success of asexually produced mildew offspring. Moreover, the data provides fresh insights into the crop history of wheat and barley and their interaction with the mildew pathogen.

Asexually produced offspring more successful
Like other fungi, mildew reproduces in two ways: Sexually, where the genetic material is recombined, and asexually, where the offspring and the mother fungus are genetically identical. The researchers now demonstrate that the success of the two reproduction methods could not be more different: “Mildew fungi detected on afflicted host plants have only successfully reproduced sexually every few centuries, primarily reproducing asexually instead,” explains Wicker.

This baffling fact has more deep-rooted causes: In order to infect the host plant, the mildew fungus needs to be able to successfully disable the plant’s defense mechanisms – the parasite has to be perfectly adapted to its host. “In a parasite-host situation, new combinations of genetic material are a disadvantage for the parasite as the adaptation to the host and its defense mechanisms deteriorates as a result.” Genetically identical offspring of successful mildew fungi that have already been able to infect the host plant, however, have the ideal genetic prerequisites to be able to attack a host themselves. According to Schulze-Lefert, wheat and barley mildew offspring from asexual reproduction are normally more successful than their sexually reproduced counterparts. Asexual reproduction as a success model seems to be characteristic of many parasitic fungi, including those that afflict humans, such as athlete’s foot.

Sex still worthwhile
Based on the gene analyses, the scientists were also able to prove that mildew already lived parasitically on the ancestral form of wheat 10,000 years ago, before wheat were actually domesticated as crops. None of the subsequent genetic changes in the crops due to breeding or spontaneous mutations was ever able to keep the mildew fungus away from wheat in the longer term. And this is precisely where the advantage of sexual reproduction lies and why the usually unsuccessful sexual reproduction cycle is still worthwhile for the mildew fungus: Wheat and mildew are embroiled in a permanent evolutionary arms race. “If wheat improves its defense mechanisms against the parasites, the fungus has to be able to follow suit or it has lost,” explains Wicker. “That’s only possible by recombining the genetic material; in other words, sexual reproduction.”

Evidently, a sexual exchange and mixtures of the genetic material of different mildew varieties have occurred several times in the course of the millennia, giving rise to new mildew varieties that were able to attack new sorts of wheat. The scientists suspect that the grain trade in the ancient world was partly responsible for the emergence of new mildew varieties.

Literature:
Thomas Wicker et al. The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nature Genetics. July 14, 2013. doi:10.1038/ng.2704

Stéphane Hacquard et al. Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. PNAS. May 21, 2013. doi/10.1073/pnas130607110

Contact:
Wheat mildew:
Prof. Dr. Beat Keller
Institute of Plant Biology
University of Zurich
Tel. +41 44 634 82 30
E-Mail: bkeller@botinst.uzh.ch
Nathalie Huber
Media Relations
University of Zurich
Tel. +41 44 634 44 64
E-Mail: nathalie.huber@kommunikation.uzh.ch
Barley mildew:
Prof. Dr. Paul Schulze-Lefert
Max Planck Institute for Plant Breeding Research
50829 Cologne
Germany
Tel. +49 221 5062 350
E-Mail: schlef@mpiz-koeln.mpg.de

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>