Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Sets the Stone Rolling - New Insights into Cancer Pathogenesis

30.03.2009
Researchers of the Max Delbrück Center for Molecular Medicine (MDC) and the Charité in Berlin, Germany, in close cooperation with the National Cancer Institute, Bethesda, MD, USA, have identified three cancer genes involved in the pathogenesis of a cancer of the lymphatic system.

At the same time they were able to shed light on the translocation process, which also plays a crucial role in cancer pathogenesis. During translocation, fragments of genes move from one chromosome to another and fuse - if they are close enough to each other - to a new gene. This fusion gene additionally stimulates the growth of cancer genes. (PNAS, Early Edition, 2009, doi:10.1073/pnas.0900912106).

Researchers and clinicians found clues to this process while studying anaplastic large cell lymphoma (ALCL), a disease of the lymphatic system, which belongs to the group of non-Hodgkin's lymphomas. In this disease specific blood cells of the immune system, the T cells, are affected: within the nuclear space of the T cell, gene fragments can move from chromosome 2 to chromosome 5, thereby forming a fusion gene (NPM-ALK). Such fusion genes can trigger uncontrolled growth of cells. However, in 40 percent of patients with ALCL, no translocation can be detected in the blood cells. What triggers the disease is still unknown.

As Dr. Stephan Mathas (MDC and Charité) explained, in ALCL cells the three genes they identified are falsely "massively up-regulated". "Normally, these genes are never active in a T cell," Dr. Mathas said. "In ALCL, however, they play a fundamental role." The three identified genes, which have the scientific abbreviations Fra2, Id2 and CSF1 receptor, can function as oncogenes which cause cells to grow in an uncontrolled and uninhibited manner. The first two genes are on chromosome 2, the last-mentioned gene on chromosome 5 - all of them near the chromosome breakpoints which lead to ALCL-typical translocation. Moreover, Fra2 and Id2 are amplified in ALCL, which means that several copies of these genes are present in the cell, additionally stimulating cancer pathogenesis.

Aberrant up-regulation facilitates the occurrence of translocations
Furthermore, the researchers were able to show that aberrant up-regulation of these genes leads to a close proximity of the chromosome fragments 2 and 5 within the cellular nuclear space. Typically these fragments fuse with each other in ALCL cells. The researchers were also able to reproduce this fusion process experimentally. They conclude that the aberrant activity of these three cancer genes is one of the prerequisites for ALCL pathogenesis and precedes the formation of the translocation. Moreover, these data for the first time directly support the hypothesis that translocations only can occur when the chromosomes in question are spatially close together prior to translocation.

*Gene deregulation and spatial genome reorganization near breakpoints prior to formation of translocations in ALCL

Stephan Mathas*?, Stephan Kreher*?, Karen J. Meaburn?, Korinna Jöhrens§, Björn Lamprecht*?, Chalid Assaf¶, Wolfram Sterry¶, Marshall E. Kadin||, Masanori Daibata**, Stefan Joos??, Michael Hummel§, Harald Stein§, Martin Janz*?, Ioannis Anagnostopoulos§, Evelin Schrock??, Tom Misteli?, and Bernd Dörken*?

*Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; ?Hematology, Oncology and Tumorimmunology, Charité, Medical University Berlin, CVK, Augustenburger Platz 1, 13353 Berlin, Germany; ?Cell Biology of Genomes, National Cancer Institute, NIH, Bethesda, 41 Library Drive, MD 20892, USA; §Institute of Pathology, Charité, Medical University Berlin, CBF, Hindenburgdamm 30, 12200 Berlin, Germany; ¶Department of Dermatology, Allergy and Venerology, Skin Cancer Center Charité, Medical University Berlin, Charitéplatz 1, 10117 Berlin, Germany; ||Department of Pathology, Harvard Medical School, Boston, MA 02115, USA and Department of Dermatology and Skin Surgery, Roger Williams Medical Center, 50 Maude Street, Providence, RI 02908, USA; **Department of Hematology, Kochi Medical School, Kohasu, Okoh-cho, Nankuko-city, Kochi 783-8505, Japan; ??German Cancer Research Center, B060, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; ??Institute for Clinical Genetics, Dresden University of Technology, Fetscherstr. 74, 01307 Dresden, Germany

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Strasse 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>