Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequencing tracks animal-to-human transmission of bacterial pathogens

25.03.2013
Researchers have used whole genome sequencing to reveal if drug-resistant bacteria are transmitted from animals to humans in two disease outbreaks that occurred on different farms in Denmark.

The results, which are published today in EMBO Molecular Medicine, confirm animal-to-human transmission of methicillin-resistant Staphylococcus aureus (MRSA), a disease-causing bacterium that carries the recently described mecC gene. The mecC gene is responsible for resistance to the penicillin-like antibiotic methicillin.

Drug-resistant bacterial infections pose a significant challenge to public health and may have severe and sometimes fatal consequences. As the costs of whole genome sequencing methods continue to plummet and the speed of analysis increases, it becomes increasingly attractive for scientists to use whole genome sequencing to answer disease-related questions.

“We used whole genome sequencing to see if we could determine if the two disease outbreaks were caused by the same bacterium and to investigate if the pathogens were transmitted from animal to humans or the other way around,” remarked Mark Holmes, from the University of Cambridge and the senior author on the paper. “At first glance, it seems reasonable to expect the same pathogen to be the source of the two outbreaks at the two geographically close locations.
By looking at the single differences in nucleotides or SNPs in the DNA sequences of each isolate, it became obvious that two different strains of bacteria were responsible for the two disease outbreaks. In one case, the results also clearly showed that the most likely direction of transmission was from animal to human.”

Methicillin-resistant S. aureus can lead to debilitating skin and soft tissue infec-tions, bacteremia, pneumonia and endocarditis. The researchers used an Illumina HiSeq sequencing system to take a close look at the nucleotide sequence of each pathogen. By comparing single differences in nucleotides in the two sequences (single nucleotide polymorphisms) they were able to reach conclusions about the identity of the pathogens and the routes of infection.

The researchers emphasize that while whole genome sequencing cannot replace other more traditional types of diseases analysis it can greatly increase the ability of scientists to distinguish between different pathogens as the cause of disease.

“Our findings demonstrate that the MRSA strains we studied are capable of transmission between animals and humans, which highlights the role of livestock as a potential reservoir of antibiotic-resistant bacteria,” remarked Ewan Harrison, one of the lead authors of the study.

Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC

Ewan M. Harrison, Gavin K. Paterson, Matthew T.G. Holden, Jesper Larsen, Marc Stegger, Anders Rhod Larsen, Andreas Petersen, Robert L. Skov, Judit Marta Christensen, Anne Bak Zeuthen, Ole Heltberg, Simon R. Harris, Ruth N. Zadoks, Julian Parkhill, Sharon J. Peacock, Mark A. Holmes
Read the paper: http://onlinelibrary.wiley.com/doi/10.1002/emmm.201202413/full

doi: 10.1002/emmm.201202413

Further information on EMBO Molecular Medicine is available at www.embomolmed.org

Media Contacts
Barry Whyte
Head | Public Relations and Communications
barry.whyte@embo.org

About EMBO
EMBO is an organization of more than 1500 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to sup-port talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in tech-niques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Yvonne Kaul | EMBO Communications
Further information:
http://www.embo.org

More articles from Life Sciences:

nachricht No gene is an island
25.07.2017 | Institute of Science and Technology Austria

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>