Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sequencing tools give up close look at yeast evolution

22.01.2014
Highlights in this week's Molecular Biology and Evolution

The baker's yeast Saccharomyces cerevisiae has been associated with human activities for thousands of years, being the primary biological agent in baking, brewing, winemaking and other fermentation processes.

It is also one of the most important model organisms in molecular biology and genetics research. For a long time, the history and evolution of this important yeast has been a completely mystery, but recent advances in genome sequencing technologies now allow it to be studied in great detail.

Using next-generation sequencing, corresponding author Gianni Liti et. al. provide a detailed characterization of the genetic variation present within the baker's yeast species. They sequenced the genomes of 42 strains of S. cerevisiae and its closest relative S. paradoxus, which is an entirely wild species that has not had any contact with humans.

A central finding of this study is that even though strains in S. paradoxus are separated by much greater genetic distances in terms of single-nucleotide polymorphisms (SNPs), the S. cerevisiae strain genomes harbor more variation in terms of absence and presence and copy number of genes.

It has previously been observed that trait variation is also much larger in S. cerevisiae than in its wild relative. These new results therefore raise the intriguing hypothesis that this variation in the content of the genome, rather than single-nucleotide differences, underlies the large phenotypic variation in S. cerevisiae.

The authors find that the subtelomeric regions of the genomes, located just before the telomeres at each chromosome end, are highly enriched for genome variation that is likely to contribute to differences in traits between strains. This includes loss-of-function mutations that likely disrupt the function of whole genes. As an example of functional variation they describe how differences in the copy number of a subtelomeric gene cluster controls the ability of strains to grow under arsenic stress, and demonstrate that this variation is the product of convergent evolution in yeast lineages in different parts of the world.

"These genome sequences allowed us to expose surprising differences between the evolutionary histories of the common baker's yeast and its wild relative. Our results suggest that the very large diversity in traits observed between strains of baker's yeast might mostly be due to the presence or absence of entire genes rather than differences in single DNA letters."

The study provides intriguing insights into the recent history of this important organism and the relationship between genome variation and trait variation. Future research will further elucidate what role humans have played in shaping the evolution of baker's yeast, for example the extent to which the genomic variation is a consequence of yeast strains moving into novel habitats and niches opened up by human activities.

Joe Caspermeyer | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>