Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequencing efforts miss DNA crucial to bacteria's disease causing power

26.06.2014

Genomic sequencing is supposed to reveal the entire genetic makeup of an organism.

For infectious disease specialists, the technology can be used to analyze a disease-causing bacterium to determine how much harm it is capable of causing and whether or not it will be resistant to antibiotics.

But new research at Rockefeller University suggests that current sequencing protocols overlook crucial bits of information: isolated pieces of DNA floating outside the bacterial chromosome, the core of a cell's genetic material.

"Extensive sequencing of chromosomal DNA has been performed for a variety of pathogenic organisms, but these sequences fail to uncover the presence of DNA elements in the cell's cytoplasm. As a result, the DNA profile of a pathogenic bacteria may be incomplete," says Vincent Fischetti, head of the Laboratory of Bacterial Pathogenesis and Immunology. "We have now devised a way to identify these elements."

Extrachromosomal DNA can include bacteria-infecting viruses, known as phages, and strands of self-replicating DNA, known as plasmids, often picked up from other bacteria. These phages and plasmids can easily move between bacterial cells, and scientists have known for some time that, as a result, these so-called mobile genetic elements can play important roles in virulence and antibiotic resistance.

This study focused on phages. Their activity outside the chromosomes has been poorly studied; most research has focused on phages integrated into bacterial chromosomes. Meanwhile, plasmids, which allow bacteria to share genes among themselves, are well studied.

"So far, no one has looked across a variety of strains of bacteria, as we have done with Staphylococcus aureus, to find these extrachromosomal phages that have potential to play an important role in disease," says Bryan Utter a postdoc in the lab and the first author of the research published June 25 in PLoS ONE. Staphylococcus is a common bacterium that can cause serious or even fatal infections under certain circumstances.

Until now, an analysis of this scope wasn't possible, because chromosomal DNA easily fragments and contaminates the sample during the process by which researchers prepare the extrachromosomal DNA, making them virtually impossible to identify and sequence.

"To solve this problem, we borrowed a tool from phages themselves: the enzymes these viruses use to break apart a phage-infected cell to release their progeny," says Douglas Deutsch, a graduate student in the lab. These enzymes, a focus of research in the lab in the development of novel anti-infectives, are now being harnessed to gently extract the chromosomal DNA, while leaving behind any other genetic elements for analysis. Using this technique, they looked for extrachromosomal phages across 24 medically important strains of Staphylococci.

Not only did extrachromosomal phages appear widespread among these strains, but the researchers found evidence that these phages encode genes that can make the bacteria more dangerous.

For example, when the researchers decoded the complete sequence of one extrachromosomal circular phage from a disease-causing Staphylococcus, they identified a number of genes that may help this strain evade a host's immune system and that could readily spread to other Staphylococcus bacteria. The researchers are now studying what role, if any, these viral genes play in this strain's ability to cause disease.

The implications go beyond pathogenicity. Phage elements, including those not integrated into chromosomes, are part of a bacterial system for regulating genes. For instance, some of these phage elements can activate or silence bacterial genes by moving into or out of the chromosome. Within the Staphylococcus strains, the researchers found both transient elements as well as those residing permanently outside the chromosomes.

"By examining the DNA outside the bacterial chromosomes, you may get a better understanding of the dynamics by which these elements may mobilize thereby controlling microbial genes," Fischetti says.

Zach Veilleux | Eurek Alert!
Further information:
http://www.rockefeller.edu

Further reports about: DNA Rockefeller Sequencing Staphylococcus bacteria bacterial bacterium chromosomal chromosomes enzymes genes play strains

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

Swiss space research reaches for the sky

29.09.2016 | Physics and Astronomy

Small- and mid-sized cities particularly vulnerable

29.09.2016 | Earth Sciences

Discovery of an Extragalactic Hot Molecular Core

29.09.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>