Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequencing efforts miss DNA crucial to bacteria's disease causing power

26.06.2014

Genomic sequencing is supposed to reveal the entire genetic makeup of an organism.

For infectious disease specialists, the technology can be used to analyze a disease-causing bacterium to determine how much harm it is capable of causing and whether or not it will be resistant to antibiotics.

But new research at Rockefeller University suggests that current sequencing protocols overlook crucial bits of information: isolated pieces of DNA floating outside the bacterial chromosome, the core of a cell's genetic material.

"Extensive sequencing of chromosomal DNA has been performed for a variety of pathogenic organisms, but these sequences fail to uncover the presence of DNA elements in the cell's cytoplasm. As a result, the DNA profile of a pathogenic bacteria may be incomplete," says Vincent Fischetti, head of the Laboratory of Bacterial Pathogenesis and Immunology. "We have now devised a way to identify these elements."

Extrachromosomal DNA can include bacteria-infecting viruses, known as phages, and strands of self-replicating DNA, known as plasmids, often picked up from other bacteria. These phages and plasmids can easily move between bacterial cells, and scientists have known for some time that, as a result, these so-called mobile genetic elements can play important roles in virulence and antibiotic resistance.

This study focused on phages. Their activity outside the chromosomes has been poorly studied; most research has focused on phages integrated into bacterial chromosomes. Meanwhile, plasmids, which allow bacteria to share genes among themselves, are well studied.

"So far, no one has looked across a variety of strains of bacteria, as we have done with Staphylococcus aureus, to find these extrachromosomal phages that have potential to play an important role in disease," says Bryan Utter a postdoc in the lab and the first author of the research published June 25 in PLoS ONE. Staphylococcus is a common bacterium that can cause serious or even fatal infections under certain circumstances.

Until now, an analysis of this scope wasn't possible, because chromosomal DNA easily fragments and contaminates the sample during the process by which researchers prepare the extrachromosomal DNA, making them virtually impossible to identify and sequence.

"To solve this problem, we borrowed a tool from phages themselves: the enzymes these viruses use to break apart a phage-infected cell to release their progeny," says Douglas Deutsch, a graduate student in the lab. These enzymes, a focus of research in the lab in the development of novel anti-infectives, are now being harnessed to gently extract the chromosomal DNA, while leaving behind any other genetic elements for analysis. Using this technique, they looked for extrachromosomal phages across 24 medically important strains of Staphylococci.

Not only did extrachromosomal phages appear widespread among these strains, but the researchers found evidence that these phages encode genes that can make the bacteria more dangerous.

For example, when the researchers decoded the complete sequence of one extrachromosomal circular phage from a disease-causing Staphylococcus, they identified a number of genes that may help this strain evade a host's immune system and that could readily spread to other Staphylococcus bacteria. The researchers are now studying what role, if any, these viral genes play in this strain's ability to cause disease.

The implications go beyond pathogenicity. Phage elements, including those not integrated into chromosomes, are part of a bacterial system for regulating genes. For instance, some of these phage elements can activate or silence bacterial genes by moving into or out of the chromosome. Within the Staphylococcus strains, the researchers found both transient elements as well as those residing permanently outside the chromosomes.

"By examining the DNA outside the bacterial chromosomes, you may get a better understanding of the dynamics by which these elements may mobilize thereby controlling microbial genes," Fischetti says.

Zach Veilleux | Eurek Alert!
Further information:
http://www.rockefeller.edu

Further reports about: DNA Rockefeller Sequencing Staphylococcus bacteria bacterial bacterium chromosomal chromosomes enzymes genes play strains

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>