Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Selfish gene may undermine genome police

05.03.2013
Biologists have been observing the “selfish” genetic entity segregation distorter (SD) in fruit flies for decades. Its story is a thriller among molecules, in which the SD gene destroys maturing sperm that have a rival chromosome. A new study reveals a tactic that gives SD’s villainy an extra edge.

For a bunch of inanimate chemical compounds, the nucleic and amino acids caught up in the infamous “selfish” segregation distorter (SD) saga have put on quite a soap opera for biologists since the phenomenon was discovered in fruit flies 50 years ago. A new study, a highlight in the March issue of the journal Genetics, provides the latest plot twist.


A subcellular life and death struggle
Healthy spermatids (maturing sperm) of a fly, left, are decimated in a setting dominated by a “segregation distorter,” right. A runaway snippet of code that rapidly copies itself helps target spermatids for fatal attacks. Credit: Reenan lab/Brown University

In TV listings the series would be described this way: “A gene exploits a rival gene’s excesses, sabotaging any sperm that bear a rival’s chromosome.” The listing is not an exaggeration except for ascribing malicious intent to strings of biochemicals. When male flies make their sperm, the SD gene (call it “A”) manages to rig meiosis — the specialized cell division that makes sex cells — so that maturing sperm that bear chromosomes with the susceptible allele (call that one “a”) end up defective and discarded. They never even leave the testes.

It is murder of a sort. Similar selfish systems occur in mammals, including humans.

In the Genetics study conducted at Brown University, scientists uncover new clues about how the SD gene might be gaming the system against “a.” It’s a plot so fiendish, only an aggregation of genetic bases could evolve it. It also deepens biologists’ understanding of an instance in which life violates a fundamental balance predicted by the father of genetics, Gregor Mendel.

“Mendel’s first law is that different alleles of a gene will segregate,” said Robert Reeenan, professor of biology and the study’s senior author. “If we have two alleles — big A and little a — then Mendel says 50 percent of the sperm at random will get the big A and 50 percent of the sperm will get the little a. But some SD (A) alleles are so strong they pretty much kill off all the non-SD (a) chromosomes.

“This is a real cheater, a real stinker,” Reenan said. “Most genes, like most people, are good upstanding citizens, but some genes want to hog all the resources, hog all the benefit.”

The SD backstory

What makes the “a” allele susceptible to SD’s subterfuge is the number of copies it harbors of a runaway snippet of genetic code called Responder. A few copies of Responder are no problem, but hundreds of copies make “a” susceptible. Some alleles have thousands of copies and only one in a thousand survives.

Genomes try to root out parasites like Responder by creating and dispatching proteins into the nucleus and the cytoplasm. These police proteins are armed with “police sketches” of the parasites in the form of small RNA transcripts.

The new plot twist

It struck Reenan and lead author Selena Gell that this policing system — because it targets self-copiers like Responder — might somehow have a role in the SD saga. They decided to find out by purposely perturbing the system.

In the experiments described in Genetics, Reenan and Gell show that engineered mutations in the police gene named Aubergine (others on the force in the experiments are called Piwi, Squash, and Zucchini) amplify SD chromosomes’ success in eliminating Responder-laden sperm, compared to that of SD chromosomes without Aubergine’s help. The results show that this police system suppresses Responder, and therefore SD. It also means that if SD somehow can upset the policing system, it can have a field day.

“We’re the first to have experimentally shown that mutations in the system can modify the degree of distortion,” Reenan said. “We used homologous recombination to knock in a mutation specifically on the SD chromosome to compromise Aubergine, and that’s exactly what we saw: the chromosome became more selfish.”

Reenan and Gell did not go so far as to determine whether known SD-promoting genes called Enhancer of SD, Stabilizer of SD, and Modifier of SD act by interfering with Aubergine or its buddies on the force, but Reenan said that is among the next things his group will look into.

In the meantime, he reflects, it may not be entirely fair for biologists to label SD as “selfish” and not Responder as well. As an out-of-control self-repeater in the genome, Responder is surely no prize, and SD performs something of a service by taking it out when it can.

The whole story is really a clash of the selfish. “Humans, flies, all of us have been attacked for millennia by selfish genetic elements that want to make as many copies as possible,” Reenan said.

Sometimes, as in SD flies, there are no apparent ill effects, but when the selfish genes come in the form of viruses or other kinds of transposons, there can be trouble. So investigating the tactics of selfish genes is not merely the stuff of biological soap operas.

Gell, who was supported by a National Science Foundation Predoctoral Fellowship during the research, is now a postdoctoral scholar at Harvard University.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

Further reports about: Little Brown Bats Responder SELFISH amino acid chromosomes

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>