Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeking Social Genes

02.02.2011
Researchers compare insect genomes to hone in on genes associated with complex social structure

In order understand the evolution of complex societies, researchers are sequencing the genomes of social insects. The most recent data, published this week in the Early Edition of Proceedings of the National Academy of Sciences, come from several species of ants, including the red harvester ant, Pogonomyrmex barbatus.

A team, lead by Arizona State University organismal and systems biology professor Juergen Gadau, sequenced one of the genomes and set out to decipher which genes might be responsible for defining which ants work and which ants reproduce in a red harvester ant colony.

Division of labor and reproduction are two crucial characteristics scientists think are important to the evolution of social structure. "Having multiple independently evolved social genomes helps us to better understand which genes are involved in crucial social traits, because those should be highly conserved," Gadau said.

In addition to specialization of roles within a colony, researchers argue that development of methods to communicate information is another key aspect of eusociality, the extreme form of social behavior exhibited by certain bees, termites and ants.

This study was funded by the Division of Integrative Organismal Systems, part of the National Science Foundation's Biology Directorate. The Developmental Systems Cluster within the division supports research aimed at understanding how interacting developmental processes give rise to the emergent properties of organisms.

Results from Gadau's study reveal that, compared to other insects, the red harvester ant genome has significantly more genes associated with the sense of smell, as well as detection and metabolism of chemical signals. This is consistent with the fact that ants use chemical signals to communicate.

Another difference appears in the genes of the ant's immune system. Previously, scientists hypothesized that ants may have evolved novel immune responses or specialized behaviors to avoid disease outbreaks within their dense populations. These results indicate the former may be a distinct possibility, however future comparisons with other insect genomes should yield more insight into the significance of the differences observed in this study.

"The diversity in social structure between the different ants sequenced will allow us to search for the genetic basis and the architecture underlying the observed social diversity in ants," Gadau explained. "A comparison with bees, a completely independent evolutionary lineage, will give us an opportunity to test whether there are multiple ways how a genome can become a sociogenome."

Finally, the team observed evidence of epigenetic differences--or changes in appearance that can be inherited--in genes related to division of labor and reproduction. In this case, the genes responsible for development of wings and ovaries, role-specific traits in a red harvester and colony, appear to show some differences.

According to the researchers, the finding implies that, although the genes themselves are present in both worker and queen ants, when and where the genes are expressed is highly regulated and heritable from one generation to the next.

"Everything we can learn about epigenetic modifications will probably have major implications for human health since these mechanisms are thought to be critical in the development of complex diseases of humans, such as mental illnesses and diabetes," said Gadau.

Media Contacts
Lisa Van Pay, NSF (703) 292-8796 lvanpay@nsf.gov
Margaret Coulombe, Arizona State University (480) 727-8934 margaret.coulombe@asu.edu
Principal Investigators
Juergen Gadau, Arizona State University (480) 965-2349 jgadau@asu.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Lisa Van Pay | EurekAlert!
Further information:
http://www.nsf.gov

Further reports about: NSF Social Impacts chemical signals genes social structure

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>