Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeking Social Genes

02.02.2011
Researchers compare insect genomes to hone in on genes associated with complex social structure

In order understand the evolution of complex societies, researchers are sequencing the genomes of social insects. The most recent data, published this week in the Early Edition of Proceedings of the National Academy of Sciences, come from several species of ants, including the red harvester ant, Pogonomyrmex barbatus.

A team, lead by Arizona State University organismal and systems biology professor Juergen Gadau, sequenced one of the genomes and set out to decipher which genes might be responsible for defining which ants work and which ants reproduce in a red harvester ant colony.

Division of labor and reproduction are two crucial characteristics scientists think are important to the evolution of social structure. "Having multiple independently evolved social genomes helps us to better understand which genes are involved in crucial social traits, because those should be highly conserved," Gadau said.

In addition to specialization of roles within a colony, researchers argue that development of methods to communicate information is another key aspect of eusociality, the extreme form of social behavior exhibited by certain bees, termites and ants.

This study was funded by the Division of Integrative Organismal Systems, part of the National Science Foundation's Biology Directorate. The Developmental Systems Cluster within the division supports research aimed at understanding how interacting developmental processes give rise to the emergent properties of organisms.

Results from Gadau's study reveal that, compared to other insects, the red harvester ant genome has significantly more genes associated with the sense of smell, as well as detection and metabolism of chemical signals. This is consistent with the fact that ants use chemical signals to communicate.

Another difference appears in the genes of the ant's immune system. Previously, scientists hypothesized that ants may have evolved novel immune responses or specialized behaviors to avoid disease outbreaks within their dense populations. These results indicate the former may be a distinct possibility, however future comparisons with other insect genomes should yield more insight into the significance of the differences observed in this study.

"The diversity in social structure between the different ants sequenced will allow us to search for the genetic basis and the architecture underlying the observed social diversity in ants," Gadau explained. "A comparison with bees, a completely independent evolutionary lineage, will give us an opportunity to test whether there are multiple ways how a genome can become a sociogenome."

Finally, the team observed evidence of epigenetic differences--or changes in appearance that can be inherited--in genes related to division of labor and reproduction. In this case, the genes responsible for development of wings and ovaries, role-specific traits in a red harvester and colony, appear to show some differences.

According to the researchers, the finding implies that, although the genes themselves are present in both worker and queen ants, when and where the genes are expressed is highly regulated and heritable from one generation to the next.

"Everything we can learn about epigenetic modifications will probably have major implications for human health since these mechanisms are thought to be critical in the development of complex diseases of humans, such as mental illnesses and diabetes," said Gadau.

Media Contacts
Lisa Van Pay, NSF (703) 292-8796 lvanpay@nsf.gov
Margaret Coulombe, Arizona State University (480) 727-8934 margaret.coulombe@asu.edu
Principal Investigators
Juergen Gadau, Arizona State University (480) 965-2349 jgadau@asu.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Lisa Van Pay | EurekAlert!
Further information:
http://www.nsf.gov

Further reports about: NSF Social Impacts chemical signals genes social structure

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>