Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The secretive immune system of the salmon

28.01.2009
During his doctoral thesis, Erlend Haugarvoll discovered new aspects of the salmon immune system. His research looked at the immune cells in the gills of salmon and at immune responses to vaccination. A special type of tissue, rich in immune cells, was found in the gills, and new properties of immune cells that produce brown pigment were discovered.

Successful salmon farming in Norway and other countries depends on the use of vaccination. Vaccination gives salmon good protection against several diseases, but has serious side-effects.

Inflammatory reactions at the injection site can lead to reduced growth rate, reduced meat quality and deformities, raising both economical and ethical around current vaccination regimes. In order to improve resistance to disease in salmon, it is important to find alternative vaccination methods and to acquire more knowledge of how salmon react to vaccination.

Haugarvoll and his colleagues discovered in salmon gill a tissue extremely rich in immune cells. Salmon gills have extremely thin mucous membranes, and they absorb oxygen from the water while keeping out potentially damaging microbes. The fish are therefore dependent on good disease resistance in this organ. The discoveries made by Haugarvoll may prove extremely useful when new vaccines, free from damaging side effects, are developed.

Some fish immune cells contain the pigment melanin, which is the same substance that darkens the skin of people and animals. These cells have been called melanomacrophages and it has been assumed they play a central role in the defence of fish against microbes. The work of Haugarvoll and his associates showed that melanomacrophages in salmon produce their own melanin. There is also reason to believe that this pigment has an important role in the salmon defence system.

Vaccination is a very effective way of protecting animals against infectious disease and has nearly removed the need for antibiotics in Norwegian salmon farming. In his doctorate, Haugarvoll investigated currently unknown sides of fish immune defence, and his work gives hope that vaccines may be developed that can be applied externally.

Cand. med. vet. Erlend Haugarvoll defended his thesis for the degree of Doctor of Philosophy, entitled " Novel leukocyte localisations and characteristics in the Atlantic salmon", on December 16, 2008, at the Norwegian School of Veterinary Science.

Magnhild Jenssen | alfa
Further information:
http://www.veths.no

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>