Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secretions of the mind

28.02.2011
Insights into a specific secretion mechanism in the brain could lead to a better understanding of anxiety in unfamiliar or stressful environments

A molecule called calcium-dependent activator protein for secretion 2 (CAPS2) promotes the secretion of a neurotrophic factor that is critical for the proper development and survival of networks of interneurons in the brain’s hippocampus, researchers in Japan have shown[1].

Teiichi Furuichi of the RIKEN Brain Science Institute in Wako, and his colleagues showed previously that CAPS2 is involved in secretion of brain-derived neurotrophic factor (BDNF) from cerebellar granule cells and neurons in the cerebral cortex, but its exact role in secretion was unclear.

Yo Shinoda, a researcher of the Furuichi's group used antibody staining to examine the distribution of CAPS2 in cultured hippocampal neurons of mice. He saw that most CAPS2 localized along the axons, but found some on secretory vesicles that contain and release BDNF.

To investigate the role of CAPS2 in BDNF secretion, the researchers visualized BDNF secretion in cells from mutant mice lacking the CAPS2 gene. They found that these cells secreted significantly less BDNF than normal cells, but the level returned to normal or became enhanced when they transfected the cells with CAPS2 (Fig. 1).

The researchers then examined hippocampal interneurons in the mutant mice and compared them with those in normal animals. These interneurons synthesize and secrete ã-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain. The mutants had reduced numbers of these cells in hippocampus of the brain. Furthermore, analysis of inhibitory synapses under the electron microscope revealed that the mutants had fewer synaptic vesicles than the normal animals. The researchers also revealed that the vesicles were distributed over a smaller area within presynaptic boutons, the specialized area where loaded vesicles dock to release their contents.

Finally, the researchers used microelectrodes to examine the electrical activity of the cells from the mutants and discovered that there was a significant reduction in both the number and size of spontaneous inhibitory postsynaptic currents. Consequently, the mutant mice displayed anxiety-like behaviors that would be expected with a GABA signaling impairment.

The findings show that CAPS2 promotes BDNF secretion by affecting the kinetics of its release from dense-core vesicles, and that BDNF is essential for proper development and function of the networks of inhibitory interneurons in the hippocampus, the researchers conclude. “We are interested in the molecular mechanism underlying the enhanced BDNF secretion, and would like to analyze the kinetics of secretion using state-of-the art cell imaging technology,” Furuichi explains. “We also want to study relation of CAPS2-BDNF-GABA pathways in anxiety and depressive behavior.”

The corresponding author for this highlight is based at the Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute

Journal information

[1] Shinoda, Y., Sadakata, T. Nakao, K., Katoh-Semba, R., Kinameri, E., Furuya, A., Yanagawa, Y., Hirase, H. & Furuichi, T. Calcium-dependent activator protein for secretion 2 (CAPS2) promotes BDNF secretion and is critical for the development of GABAergic interneuron network. Proceedings of the National Academy of Sciences USA 108, 373–378 (2011)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6533
http://www.researchsea.com

Further reports about: BDNF Brain CAPS2 Furuichi RIKEN Science TV mutant mice neurotrophic factor

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>