Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Secretions of the mind

Insights into a specific secretion mechanism in the brain could lead to a better understanding of anxiety in unfamiliar or stressful environments

A molecule called calcium-dependent activator protein for secretion 2 (CAPS2) promotes the secretion of a neurotrophic factor that is critical for the proper development and survival of networks of interneurons in the brain’s hippocampus, researchers in Japan have shown[1].

Teiichi Furuichi of the RIKEN Brain Science Institute in Wako, and his colleagues showed previously that CAPS2 is involved in secretion of brain-derived neurotrophic factor (BDNF) from cerebellar granule cells and neurons in the cerebral cortex, but its exact role in secretion was unclear.

Yo Shinoda, a researcher of the Furuichi's group used antibody staining to examine the distribution of CAPS2 in cultured hippocampal neurons of mice. He saw that most CAPS2 localized along the axons, but found some on secretory vesicles that contain and release BDNF.

To investigate the role of CAPS2 in BDNF secretion, the researchers visualized BDNF secretion in cells from mutant mice lacking the CAPS2 gene. They found that these cells secreted significantly less BDNF than normal cells, but the level returned to normal or became enhanced when they transfected the cells with CAPS2 (Fig. 1).

The researchers then examined hippocampal interneurons in the mutant mice and compared them with those in normal animals. These interneurons synthesize and secrete ã-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain. The mutants had reduced numbers of these cells in hippocampus of the brain. Furthermore, analysis of inhibitory synapses under the electron microscope revealed that the mutants had fewer synaptic vesicles than the normal animals. The researchers also revealed that the vesicles were distributed over a smaller area within presynaptic boutons, the specialized area where loaded vesicles dock to release their contents.

Finally, the researchers used microelectrodes to examine the electrical activity of the cells from the mutants and discovered that there was a significant reduction in both the number and size of spontaneous inhibitory postsynaptic currents. Consequently, the mutant mice displayed anxiety-like behaviors that would be expected with a GABA signaling impairment.

The findings show that CAPS2 promotes BDNF secretion by affecting the kinetics of its release from dense-core vesicles, and that BDNF is essential for proper development and function of the networks of inhibitory interneurons in the hippocampus, the researchers conclude. “We are interested in the molecular mechanism underlying the enhanced BDNF secretion, and would like to analyze the kinetics of secretion using state-of-the art cell imaging technology,” Furuichi explains. “We also want to study relation of CAPS2-BDNF-GABA pathways in anxiety and depressive behavior.”

The corresponding author for this highlight is based at the Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute

Journal information

[1] Shinoda, Y., Sadakata, T. Nakao, K., Katoh-Semba, R., Kinameri, E., Furuya, A., Yanagawa, Y., Hirase, H. & Furuichi, T. Calcium-dependent activator protein for secretion 2 (CAPS2) promotes BDNF secretion and is critical for the development of GABAergic interneuron network. Proceedings of the National Academy of Sciences USA 108, 373–378 (2011)

gro-pr | Research asia research news
Further information:

Further reports about: BDNF Brain CAPS2 Furuichi RIKEN Science TV mutant mice neurotrophic factor

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>