Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In Search of Wildlife-friendly Biofuels: Could Native Prairie Plants Be the Answer

05.10.2009
When society jumps on a bandwagon, even for a good cause, there may be unintended consequences. The unintended consequence of crop-based biofuels may be the loss of wildlife habitat, particularly that of the birds who call this country’s grasslands home, say researchers from Michigan Technological University and The Nature Conservancy.

In a paper published in the latest issue of the journal BioScience, David Flaspohler, Joseph Fargione and colleagues analyze the impacts on wildlife of the burgeoning conversion of grasslands to corn for ethanol production is posing a very real threat to the wildlife whose habitat is being transformed. One potential solution: Use diverse native prairie plants to produce bioenergy instead of a single agricultural crop like corn.

“There are ways to grow biofuel that are more benign,” said Flaspohler,
an associate professor in the School of Forest Resources and Environmental Science at Michigan Tech. “Our advice would be to think broadly and holistically about the approach you use to solve a problem and to carefully consider its potential long-term impacts.”

The rapidly growing demand for corn ethanol, fueled by a government mandate to produce 136 billion liters of biofuel by 2022—more than 740 percent more than was produced in 2006—and federal subsidies to farmers to grow corn, is causing a land-use change on a scale not seen since virgin prairies were plowed and enormous swaths of the country’s forests were first cut down to grow food crops, the researchers say.

“Bioenergy is the most land-intensive way to produce energy, so we need to consider the land use implications of our energy policies,” said Fargione, lead scientist for The Nature Conservancy’s North America Region.

Whether land used to grow corn for ethanol causes a loss of wildlife habitat depends on the type of land use it replaces. Most of the recent expansion in land planted to corn involves land previously used to grow other crops. But there is evidence that more and more land that had been enrolled in the federal Conservation Reserve Program (CRP) is also being converted to crop production.

CRP is a voluntary program that pays rent to landowners to convert their agricultural land to natural grasslands or tree cover, reducing soil erosion, improving water quality and benefiting wildlife. In September 2007, the amount of land enrolled in the CRP peaked at 36.8 million acres.. Just one month later, in October 2007, CRP lands had declined by 2.3 million acres. And the Food, Conservation and Energy Act of 2008 capped CRP land at 32 million acres by 2010.

CRP land has been shown to help native birds survive and thrive. CRP lands have added an estimated 2.1 million ducks annually to the fall flight over North America’s prairies. On the other hand, converting CRP land to cropland threatens the grassland birds and mammals there, Flaspohler and Fargione’s paper says. A study of the value of CRP land to grassland birds in North and South Dakota indicated that nearly two million birds of five species would be lost without the CRP in those two states.

Conversion of grassland to corn also has a potentially significant negative impact on freshwater ecosystems. Intact grasslands retain soil and nitrogen. Land planted continuously to corn releases significant amounts of nitrates to freshwater systems. When these nitrogen-laden waters real the Gulf of Mexico, they contribute to algal blooms, creating “dead zones” where low oxygen levels make it difficult for fish and other aquatic wildlife to survive. Soil draining off cropland increases sediment in fresh water, raising temperatures and degrading the habitat of fish such as trout.

What’s the solution? There are at least two ways to produce bioenergy without destroying wildlife, habitat, the researchers say. One is to use biomass sources that don’t require additional land, such as agricultural residues and other wastes from municipal, animal, food and forestry industries.

Another is to grow native perennials such as switchgrass and big bluestem. The natural diversity of prairie plants offers many benefits, including increased carbon storage in the soil, erosion control and the maintenance of insect diversity, which does double duty by providing food for birds and helping to pollinate nearby crops.

“Bioenergy can be produced in ways that provide multiple benefits to society, including energy production, carbon sequestration and wildlife habitat,” Fargione said. “The Conservancy is working to implement on-the-ground demonstrations of grass-based energy systems that would increase the economic value of grasslands and provide an incentive for maintaining and extending grassland habitat.”

One concern about using native prairie plants as bioenergy crops is a lower yield per acre planted. However, said Flaspohler, he and fellow Michigan Tech associate professor Chris Webster have collected plant productivity data from12 test fields in southern Wisconsin that should shed light on how field level plant species diversity affects the amount of biomass produced per year.

“We are looking at trade-offs between producing a commodity for use as bioenergy and maintaining important ecosystem services such as soil fertility, water quality, and wildlife habitat,” Flaspohler noted. “It was by ignoring unintended consequences that we’ve now found ourselves highly dependent on a non-renewable fuel source (fossil fuels) that is contributing to climate change. With some foresight and with information on key trade-offs, I think we can make wiser decisions in the future. “

Jennifer Donovan | Newswise Science News
Further information:
http://www.mtu.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>