Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sea Lamprey Genome Mapped With Help From Scientists at OU

01.03.2013
Beginning in 2004, a group of scientists from around the globe, including two University of Oklahoma faculty members, set out to map the genome of the sea lamprey.
The secrets of how this jawless vertebrate separated from the jawed vertebrates early in the evolutionary process will give insight to the ancestry of vertebrate characters and may help investigators more fully understand neurodegenerative diseases in humans.

David McCauley, associate professor in the Biology Department in the OU College of Arts and Sciences, and Sandra W. Clifton, with the OU Center for Advanced Genome Technology, collaborated with scientists from Japan, Germany, the United States, Canada and Great Britain.

McCauley isolated and prepared the liver tissue from the single adult female sea lamprey, from which genomic DNA was isolated for sequencing. Clifton was involved in management of the sea lamprey sequencing project at the Genome Institute at Washington University in St. Louis until her retirement in 2010. The project then was taken over by Patrick Minx. Clifton participated in the discussions regarding the paper preparation, and she is a senior author on the paper. Sequencing was performed at the Genome Institute and the project was directed by Weiming Li at Michigan State University with funding provided by the National Human Genome Research Institute at the National Institutes of Health.

“The sea lamprey is a primitive jawless vertebrate that diverged from other jawed vertebrates early in the vertebrate ancestry,” writes McCauley. “Because of its early divergence from other living vertebrates, the sea lamprey genome can provide insights for understanding how vertebrate genomes have evolved, and the origins of vertebrate character traits. Several important findings arise from sequencing the sea lamprey genome: Vertebrates have undergone two ‘whole-genome’ rounds of duplication, resulting in multiple copies of many genes present in vertebrates. One outstanding question has been the timing of these duplications in vertebrate history. Results from this project suggest that two rounds of duplication predated the divergence of the ancestral lamprey from modern jawed vertebrates. This result is important for understanding how vertebrate genomes have evolved, and in particular, for understanding if the organization of the genome is common to all vertebrates.

“Most vertebrates contain an insulating layer of cells that surround nerve cells. Cells that wrap around a nerve fiber, or axon, are enriched in a protein known as myelin. The insulating properties of myelin allow signals to be conducted rapidly along the nerve fiber, and the loss of myelin results in numerous neurodegenerative diseases in humans.”

McCauley adds that lampreys lack these “wrapped” neurons, suggesting the insulated neurons are specific to jawed vertebrates. “Somewhat surprisingly, the sea lamprey genome contains multiple proteins involved in the synthesis of myelin, including its basic protein. This important finding suggests the origin of myelin predated the divergence of lampreys from the lineage leading to jawed vertebrates, but the role of these proteins in lampreys is not known. Other important findings shed light on evolution of the vertebrate adaptive immune system, and the evolution of paired appendages, such as fins in fish and fore-limbs and hind-limbs in tetrapod vertebrates such as humans and animals.”

The findings recently were published in the March issue of Nature Genetics. To read the full article, visit www.nature.com/ng.

Angela Startz | EurekAlert!
Further information:
http://www.ou.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>