Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps scientists see the light in bizarre bioluminescent snail

15.12.2010
Research uncovers secrets of strange mollusk and its use of light as a possible defense mechanism

Two scientists at Scripps Institution of Oceanography at UC San Diego have provided the first details about the mysterious flashes of dazzling bioluminescent light produced by a little-known sea snail.

Dimitri Deheyn and Nerida Wilson of Scripps Oceanography (Wilson is now at the Australian Museum in Sydney) studied a species of "clusterwink snail," a small marine snail typically found in tight clusters or groups at rocky shorelines. These snails were known to produce light, but the researchers discovered that rather than emitting a focused beam of light, the animal uses its shell to scatter and spread bright green bioluminescent light in all directions.

The researchers, who describe their findings in the Dec. 15 online version of Proceedings of the Royal Society B (Biological Sciences), say the luminous displays of Hinea brasiliana could be a deterrent to ward off potential predators by using diffused bioluminescent light to create an illusion of a larger animal.

In experiments conducted inside Scripps' Experimental Aquarium facility, Deheyn documented how H. brasiliana set off its glow, which he likens to a burglar alarm going off, when the snail was confronted by a threatening crab or a nearby swimming shrimp.

Wilson collected the snails used in the study in Australia and collaborated with Deheyn to characterize the bioluminescence.

"It's rare for any bottom-dwelling snails to produce bioluminescence," Wilson said. "So its even more amazing that this snail has a shell that maximizes the signal so efficiently."

Discovering how the snail spreads its light came as a surprise to the researchers since this species of clusterwink features opaque, yellowish shells that would seem to stifle light transmission. But in fact when the snail produces green bioluminescence from its body, the shell acts as a mechanism to specifically disperse only that particular color of light.

Deheyn says such adaptations are of keen interest in optics and bioengineering research and development industries.

"The light diffusion capacity we see with this snail is much greater than comparative reference material," said Deheyn, of Scripps' Marine Biology Research Division. "Our next focus is to understand what makes the shell have this capacity and that could be important for building materials with better optical performance."

The study was funded by the Air Force Office of Scientific Research and the Mark Mitchell Foundation.

Scripps Institution of Oceanography:
scripps.ucsd.edu
Scripps News:
scrippsnews.ucsd.edu
Scripps Institution of Oceanography, at UC San Diego, is one of the oldest, largest and most important centers for global science research and education in the world. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $155 million from federal, state and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.

About UC San Diego

Fifty years ago, the founders of the University of California, San Diego, had one criterion for the campus: It must be distinctive. Since then, UC San Diego has achieved the extraordinary in education, research and innovation. Sixteen Nobel laureates have taught on campus; stellar faculty members have been awarded Fields Medals, Pulitzer Prizes, McArthur Fellowships and many other honors. UC San Diego—recognized as one of the top ten public universities by U.S. News & World Report and named by the Washington Monthly as number one in the nation in rankings measuring "what colleges are doing for the country"—is widely acknowledged for its local impact, national influence and global reach. UC San Diego is celebrating 50 years of visionaries, innovators and overachievers.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu
http://www.50th.ucsd.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>