Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research team sheds light on immune system suppression

21.10.2008
Work could aid development of new treatments for such conditions as HIV, measles and tuberculosis

The work was reported in the October 16 issue of the journal Cell Host & Microbe.

The study described the suppression of this immune response in mice infected with lymphocytic choriomeningitis virus, pointing to potential new avenues for the development of drug treatments for immunosuppressive diseases in humans.

"It's the first demonstration that a virus causes suppression of the interferon response in vivo," says the paper's senior author Michael Oldstone, a Scripps Research professor and a pioneer in immune system studies. "This model explains how a secondary infection can be caused by a normal virus infection and this provides the guide for what to do and where to look in human diseases, which are of course more difficult."

Mammals have two main ways to fight off infections. Adaptive immune responses are those that involve the production of antibodies and T lymphocytes that attack specific infections. In contrast, innate immune responses are genetically encoded and are generally the same regardless of infection type. One key component of the innate immune system is interferon, which plays a range of roles including direct antiviral effects, activating innate natural killer cells and adaptive T lymphocytes, which destroy a wide range of infectious invaders.

To better understand this system, the Scripps Research team, spearheaded by Elina Zuniga, formerly a postdoctoral fellow in the Oldstone lab who is now assistant professor at the University of California, San Diego, worked with mice infected with lymphocytic choriomeningitis virus, a model Oldstone describes as a Rosetta Stone for understanding viral pathogenesis and immune system recognition of foreign substances like microbes and viruses. The researchers found that the virus suppressed the mouse immune system by interacting with immune cells known as plamacytoid dendritic cells, which are key producers of one of two critical groups of interferons, known as type I.

When plasmacytoid dendritic cells come in contact with viruses and other foreign invaders, they bind with them via membrane proteins known as toll-like receptors. Under normal conditions, this binding triggers massive production of type I interferon that then triggers other immune responses.

But the lymphocytic choriomeningits virus, and presumably other immunosupressor viruses like measles and HIV, disable this system. This then compromises other reactions, most critically activation of the natural killers that would otherwise destroy the virus-infected cells, as well as other invaders.

The researchers showed that once in this infected condition, a secondary opportunistic agent, in this case the herpes virus murine cytomegalovirus, which the mice could have otherwise fought off, grew unchecked. Remarkably, opportunistic infections with herpes viruses are frequently observed in patients infected with HIV and the mechanism described in this study could well be one of the underlying causes.

One critical aspect of the group's findings is that while the initial lymphotcytic choriomeningitis virus effectively blocked interferon production, it did not kill the dendritic cells, instead allowing them to function as long-term hosts. This allows such viruses to persist, causing persistent immunosuppression.

"I think the implications are that many of the diseases we don't know the causes for, be they behavioral, mental, cardiovascular, or endocrine, may well be caused by viruses that persist without destroying the differentiated cells they infect, alter their functions, and by this means alter homeostasis and cause disease," says Oldstone. "Examples would be viruses that persistently infect neurons and cause problems in learning and behavior, viruses that infect oligodendrocytes and cause demyelination, and viruses that infect endocrine cells and alter their production of hormones. There may be some differences, but most certainly there are a lot of commonalities."

Oldstone says that knowing such basic details about how a virus can suppress the mouse immune system could well aid the development of new treatments for the many immunosuppressive conditions such as HIV and measles that plague humans. "I think that our study opens up an avenue for people who work in those human diseases to translate our findings," says Oldstone.

For now, Oldstone's group is focused on identifying the signals and molecules involved in the lymphocytic choriomeningitis virus's crippling of the dendritic cells' interferon production.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>