Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research team defines new painkilling chemical pathway

25.11.2008
Discovery could lead to new pain treatments

Marijuana kills pain by activating a set of proteins known as cannabinoid receptors, which can also regulate appetite, inflammation, and memory. The body also has chemicals known as endocannabinoids that naturally activate these same receptors, namely N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG).

These natural components of the cannabinoid system remain the focus of intense efforts to develop new treatments not only for chronic pain, but also for obesity, anxiety, and depression. However, until the new paper, specific methods to study 2-AG signaling have been lacking.

AEA's activity has been well understood for years. In past research, Cravatt and his team identified an enzyme called fatty acid amide hydrolase, or FAAH, that breaks down AEA, effectively reducing its pain killing activity. A number of compounds are now in clinical development that target and breakdown FAAH, allowing AEA to build up, reducing pain. However, FAAH does not control 2-AG metabolism in vivo, and therefore, the potential biological functions and therapeutic potential of this second endocannabinoid have remained largely unknown.

Teasing out 2-AG's specific impacts have proven challenging. Comparable to FAAH, an enzyme called monoacylglycerol lipase (MAGL) breaks down 2-AG. But, despite numerous attempts, no group had been able to develop a chemical that inhibits MAGL specifically.

"The tools—selective and efficacious MAGL inhibitors—just weren't there, " says Jonathan Long, a graduate student of the Scripps Research Kellogg School of Science and Technology who is a member of the Cravatt lab and a first author of the new paper.

But now, a MAGL-specific inhibitor is finally available, thanks to the lab's new work. Key to this success was Activity-Based Protein Profiling, a unique chemical technique the group devised and has used fruitfully in other inhibitor hunts. This system enables the rapid engineering and testing of chemical compounds against many members of enzyme families, in hope of finding effective and selective inhibitors.

For this project, the group developed about 200 compounds and found that one was a highly effective block for MAGL. The scientists dubbed the compound JZL184, named after Long's initials and the order in the series of potential inhibitors tested. JZL184 effectively blocks only MAGL among more than 40 related brain enzymes, which opened the door for the first definitive study of 2-AG's activity.

A New View of 2-AG

Unlike increased AEA, which causes only reduced pain sensation, the team found that MAGL inhibition using JZL184, and the resulting increase in 2-AG concentration, not only reduced pain in mice, but also induced other effects associated with the cannabinoid receptors, namely hypothermia and decreased movement.

"This really does suggest a sort of segregation of labor, if you will," says Cravatt of the differential effects of elevating AEA versus 2-AG as part of the overall function of the cannabinoid system. "That, I think, is a truly unique result."

While treatments based on inhibiting FAAH show great promise for controlling pain, manipulating MAGL levels could also be a boon for treatment development, especially if 2-AG's other effects, such as hypothermia, can be managed.

"There are so many different types of pain," Cravatt says, "that it's possible some types could be more effectively treated with one treatment than another."

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>