Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research Scientists Help Pinpoint Cause of Stress-Related DNA Damage

23.08.2011
Findings Suggest New Model for Developing Novel Therapeutic Approaches

Working closely with a team of researchers from Duke University, scientists from the Florida campus of The Scripps Research Institute have helped identify a molecular pathway that plays a key role in stress-related damage to the genome, the entirety of an organism's hereditary information.

The new findings, published in the journal Nature on August 21, 2011, could not only explain the development of certain human disorders, they could also offer a potential model for prevention and therapy.

While the human mind and body are built to respond to stress—the well-known "fight or flight" response, which lasts only a few minutes and raises heart rate and blood glucose levels—the response itself can cause significant damage if maintained over long periods of time.

When stress becomes chronic, this natural response can lead to a number of disease-related symptoms including peptic ulcers and cardiovascular disorders. To make matters worse, evidence indicates that chronic stress eventually leads to DNA damage, which in turn can result in various neuropsychiatric conditions, miscarriages, cancer, and even aging itself.

Until the new study, however, exactly how chronic stress wreaks havoc on DNA was basically unknown.

"Precisely how chronic stress leads to DNA damage is not fully understood," said Derek Duckett, associate scientific director of the Translational Research Institute at Scripps Florida. "Our research now outlines a novel mechanism highlighting â-arrestin-1 as an important player."

The long-term effects of these stress hormones on DNA damage identified in the study represent a conceptual as well as a tangible advance, according to Robert J. Lefkowitz, a Duke University professor of medicine who led the study.

Since stress is not time-limited and can be sustained over months or even years, it is well appreciated that persistent stress may have adverse effects for the individual. These new findings not only uncover a novel pathway, but also have important practical implications.

"Our results provide a possible mechanistic basis for several recent reports suggesting that significant risk reductions for diseases such as prostate cancer, lung adenocarcinoma, and Alzheimer's disease may be associated with blockade of this particular stress-response pathway by beta blockers," Leftkowitz said. "Although there are most likely numerous pathways involved in the onset of stress-related diseases, our results raise the possibility that such therapies might reduce some of the deleterious DNA-damaging consequences of long-term stress in humans."

A Newly Discovered Mechanism

The newly uncovered mechanism involves â-arrestin-1proteins, â2-adrenoreceptors (â2ARs), and the catecholamines, the classic fight-or-flight hormones released during times of stress—adrenaline, noradrenaline, and dopamine. Arrestin proteins are involved in modifying the cell's response to neurotransmitters, hormones, and sensory signals; adrenoceptors respond to the catecholamines noradrenaline and adrenaline.

Under stress, the hormone adrenaline stimulates â2ARs expressed throughout the body, including sex cells and embryos. Through a series of complex chemical reactions, the activated receptors recruit â-arrestin-1, creating a signaling pathway that leads to catecholamine-induced degradation of the tumor suppressor protein p53, sometimes described as "the guardian of the genome."

The new findings also suggest that this degradation of p53 leads to chromosome rearrangement and a build-up of DNA damage both in normal and sex cells. These types of abnormalities are the primary cause of miscarriages, congenital defects, and mental retardation, the study noted.

The first author of the study, "Stress Response Pathway Regulates DNA Damage through â2-Adrenoreceptors and â-Arrestin-1," is Makoto R. Hara of Duke University. In addition to Duckett and Hara, other authors include Jeffrey J. Kovacs, Erin J. Whalen, Sudarshan Rajagopal, Ryan T. Strachan, Aaron J. Towers, Barbara Williams, Christopher M. Lam, Kunhong Xiao, Sudha K. Shenoy, Simon G. Gregory, Seungkirl Ahn, and Robert J. Lefkowitz of Duke University; and Wayne Grant of Scripps Research.

The study was supported by the National Institutes of Health.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation. For more information, see www.scripps.edu.

For information:
Eric Sauter
Tel: 215-862-2689
erics165@comcast.net

Eric Sauter | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>