Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research scientists identify genetic cause for type of deafness

07.09.2009
Discovery could lead to new therapies for progressive hearing loss

A team led by scientists from The Scripps Research Institute has discovered a genetic cause of progressive hearing loss. The findings will help scientists better understand the nature of age-related decline in hearing and may lead to new therapies to prevent or treat the condition.

The findings were published the September 3, 2009, in an advance, online issue of the American Journal of Human Genetics, a publication of Cell Press.

"It is thought that mutations in several hundred genes can lead to deafness," said team leader Ulrich Mueller, a professor in the Department of Cell Biology and member of the Skaggs Institute for Chemical Biology at Scripps Research. "However, for many forms of deafness, we don't know what effects the genes have. In this new research, we have linked a previously uncharacterized gene to deafness, first in mice and then in humans."

The team found that the gene responsible for the hearing loss—called Loxhd1—is necessary for maintaining proper functioning hair cells in the inner ear. Mutations in Loxhd1 lead to degradation of the hair cells and a disruption of the process that enables hearing.

Tracking Down a New Gene

In the new study, members of the Mueller lab used a technique called forward genetics in their quest to better understand the genetic basis of hearing and hearing loss.

In forward genetics, scientists make mutations at random in germ cells, screen the resulting models for physical characteristics of interest (in this case hearing impairment), then amplify these traits through the breeding of several generations. The gene responsible for the trait is then identified through positional cloning.

In this case, the scientists were able to generate a new mouse line with hearing impairment that they called samba and then clone the gene responsible, Loxhd1, which had never before been associated with deficits in hearing. When the mice inherited two copies of the mutated gene, they were profoundly deaf shortly after birth.

The scientists' next task was to determine why.

Normally, "hair cells" or stereocilia in the inner ear respond to fluid motion or fluid pressure changes caused by sound waves that enter the outer ear, travel down the ear canal into the middle ear, then strike the eardrum, which vibrates and moves a set of delicate bones that communicate with the inner ear. There, the movement of the stereocilia transmits signals to sensory neurons, sending signals to the brain and eventually resulting in hearing.

The scientists found that mutations in the Loxhd1 gene did not appear to affect the initial development of the stereocilia. However, these mutations did impair the function and maintenance of these essential structures, eventually leading to their degradation and to hearing loss.

But one essential question remained—was there a parallel gene in humans that also caused hearing impairment?

To find out, the Mueller lab reached out to Professor Richard J. H. Smith, the Sterba Hearing Research Professor at Carver College of Medicine, Iowa State University. Smith had been spearheading an effort to collect DNA samples from deaf families for years, and had hundreds of groups of samples in which to search for Loxhd1. Indeed, when the analysis was completed, the team found that mutations in the Loxhd1 gene were present in some of these families with hearing loss.

Clues to Age-Related Deafness

This is the third hearing-related gene that the Mueller lab has discovered, and one he is particularly excited about.

"In humans, the prevailing difficulty is progressive hearing loss," he said. "As you age, you lose your hearing slowly. Since this mutation can lead to progressive hearing loss, it provides us with more information on the genetic underpinnings of this condition and gives us clues as to how it might be corrected."

Mueller's lab is currently investigating the possibility that a therapeutic drug could be effective in reversing the molecular problems that result from the defective gene.

The first authors of the paper, "Mutations in LOXHD1, an evolutionarily conserved stereociliary protein, disrupt hair cell function in mice and cause progressive hearing loss in humans," are Nicolas Grillet and Martin Schwander of Scripps Research.

In addition to Mueller, Smith, Grillet, and Schwander, authors of the paper include: Michael S. Hildebrand of the University of Iowa City; Anna Sczaniecka, Anand Kolatkar, and Peter Kuhn of Scripps Research; Janice Velasco of the Translational Genomics Research Institute; Jennifer A. Webster, Kimia Kahrizi, and Hossein Najmabadi of the University of Social Welfare and Rehabilitation, Iran; William J. Kimberling of the Boys Town National Research Hospital; Dietrich Stephan of the Genome Institute of the Novartis Research Foundation, Arizona Alzheimer's Consortium and Banner Alzheimer's Institute; Melanie Bahlo of The Walter and Eliza Hall Institute of Medical Research, Australia; and Tim Wiltshire and Lisa M. Tarantino of the University of North Carolina, Chapel Hill.

The research was supported by the National Institute on Deafness and Other Communication Disorders of the National Institutes of Health and the Skaggs Institute for Chemical Biology, as well as a fellowship from the Bruce Ford and Anne Smith Bundy Foundation, an Australian National Health and Medical Research Council (NHMRC) Career Development Award, and a NHMRC Overseas Biomedical Fellowship.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. The Scripps Florida campus is in Jupiter, Florida.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>