Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research Scientists Create Potent Molecules Aimed at Treating Muscular Dystrophy

23.02.2012
The new approach could have implications for many genetic diseases
While RNA is an appealing drug target, small molecules that can actually affect its function have rarely been found. But now scientists from the Florida campus of The Scripps Research Institute have for the first time designed a series of small molecules that act against an RNA defect directly responsible for the most common form of adult-onset muscular dystrophy.

In two related studies published recently in online-before-print editions of Journal of the American Chemical Society and ACS Chemical Biology, the scientists show that these novel compounds significantly improve a number of biological defects associated with myotonic dystrophy type 1 in both cell culture and animal models.
“Our compounds attack the root cause of the disease and they improve defects in animal models,” said Scripps Research Associate Professor Matthew Disney, PhD. “This represents a significant advance in rational design of compounds targeting RNA. The work not only opens up potential therapies for this type of muscular dystrophy, but also paves the way for RNA-targeted therapeutics in general.”

Myotonic dystrophy type 1 involves a type of RNA defect known as a “triplet repeat,” a series of three nucleotides repeated more times than normal in an individual’s genetic code. In this case, the repetition of the cytosine-uracil-guanine (CUG) in RNA sequence leads to disease by binding to a particular protein, MBNL1, rendering it inactive. This results in a number of protein splicing abnormalities. Symptoms of this variable disease can include wasting of the muscles and other muscle problems, cataracts, heart defects, and hormone changes.

To find compounds that acted against the problematic RNA in the disease, Disney and his colleagues used information contained in an RNA motif-small molecule database that the group has been developing. By querying the database against the secondary structure of the triplet repeat that causes myotonic dystrophy type 1, a lead compound targeting this RNA was quickly identified. The lead compounds were then custom-assembled to target the expanded repeat or further optimized using computational chemistry. In animal models, one of these compounds improved protein-splicing defects by more than 40 percent.
“There are limitless RNA targets involved in disease; the question is how to find small molecules that bind to them,” Disney said. “We’ve answered that question by rationally designing these compounds that target this RNA. There’s no reason that other bioactive small molecules targeting other RNAs couldn’t be developed using a similar approach.”

The first authors of the JACS study, “Design of a Bioactive Small Molecule that Targets the Myotonic Dystrophy Type 1 RNA via an RNA Motif-Ligand Database & Chemical Similarity Searching” (http://pubs.acs.org/doi/abs/10.1021/ja210088v), are Raman Parkesh and Jessica Childs-Disney of Scripps Research. Other authors include Amit Kumar and Tuan Tran also of Scripps Research; Masayuki Nakamori, Jason Hoskins and Charles A. Thornton of the University of Rochester; and Eric Wang, Thomas Wang and David Housman of the Massachusetts Institute of Technology. This study was supported by the National Institutes of Health, Scripps Research, the Camille & Henry Dreyfus Foundation, and the Research Corporation for Science Advancement.

The first author of the ACS Chemical Biology study, “Rationally Designed Small Molecules Targeting the RNA That Causes Myotonic Dystrophy Type 1 Are Potently Bioactive” (http://pubs.acs.org/doi/abs/10.1021/cb200408a) is Jessica L. Childs-Disney of Scripps Research. Other authors include Suzanne G. Rzuczek of Scripps Research and Jason Hoskins and Charles A. Thornton of the University of Rochester. This study was supported by the National Institutes of Health, the Muscular Dystrophy Association, Scripps Research, the Camille & Henry Dreyfus Foundation, and the Research Corporation for Science Advancement.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation. For more information, see www.scripps.edu.
For information:
Mika Ono
Tel: 858-784-2052
Fax: 858-784-8136
mikaono@scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>