Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research Institute Scientists Shed Light on Cause of Spastic Paraplegia

30.09.2014

The findings point the way to potential therapies and showcase an investigative strategy

Scientists at The Scripps Research Institute (TSRI) have discovered that a gene mutation linked to hereditary spastic paraplegia, a disabling neurological disorder, interferes with the normal breakdown of triglyceride fat molecules in the brain. The TSRI researchers found large droplets of triglycerides within the neurons of mice modeling the disease.


Courtesy of The Scripps Research Institute.

Professor Benjamin Cravatt is chair of the Department of Chemical Physiology at The Scripps Research Institute.

The findings, reported this week online ahead of print by the journal Proceedings of the National Academy of Sciences, point the way to potential therapies and showcase an investigative strategy that should be useful in determining the biochemical causes of other genetic illnesses. Scientists in recent decades have linked thousands of gene mutations to human diseases, yet many of the genes in question code for proteins of unknown function.

“We often need to understand the protein function that is disrupted by a gene mutation, if we’re going to understand the mechanistic basis for the disease and move towards developing a therapy, and that is what we’ve tried to do here,” said Benjamin F. Cravatt, professor and chair of TSRI’s Department of Chemical Physiology.

There is currently no treatment for hereditary spastic paraplegia (HSP), a set of genetic illnesses whose symptoms include muscle weakness and stiffness, and in some cases cognitive impairments. About 100,000 people worldwide live with HSP.

Uncovering Clues

In the new study, Cravatt and members of his laboratory, including graduate student Jordon Inloes and postdoctoral fellow Ku-Lung Hsu, focused on DDHD2, an enzyme of unclear function whose gene is mutated in a subset of HSP cases. “These cases involving DDHD2 disruption feature cognitive defects as well as spasticity and muscle wasting, so they’re among the more devastating forms of this illness,” said Cravatt.

To start, the researchers created a mouse model of DDHD2-related HSP, in which a targeted deletion from the DDHD2 gene eliminated the expression of the DDHD2 protein. “These mice showed symptoms similar to those of HSP patients, including abnormal gait and lower performance on tests of movement and cognition,” said Inloes.

Prior research had suggested that the DDHD2 enzyme is expressed in the brain and is involved somehow in lipid metabolism. One study reported elevated levels of an unknown fat molecule in the brains of DDHD2-mutant HSP patients. Cravatt’s team compared the tissues of the no-DDHD2 mice to the tissues of mice with normal versions of the gene, and also found that the mutant mice had much higher levels of a type of fat molecule, principally in the brain.

Using a set of sophisticated “lipidomics” tests to analyze the accumulating fat molecules, they identified them as triglycerides—a major component of stored fat in the body, and a risk factor for obesity, atherosclerosis and type 2 diabetes.

“We were able to show as well, using both light microscopy and electron microscopy, that droplets of triglyceride-rich fat are present in the neurons of DDHD2-knockout mice, in several brain regions, but are not present in normal mice,” said Inloes.

For the next phase of the study, Cravatt’s team developed a complementary tool for studying DDHD2’s function: a specific inhibitor of the DDHD2 enzyme, one of a set of powerful enzyme-blocking compounds they had identified in a study reported last year. “After four days of treatment with this inhibitor, normal mice showed an increase in brain triglycerides,” said Inloes. “This suggests that DDHD2 normally breaks down triglycerides, and its inactivity allows triglycerides to build up.”

Finally the team confirmed DDHD2’s role in triglyceride metabolism by showing that triglycerides are rapidly broken down into smaller fatty acids in its presence.
“These findings give us some insight, at least, into the biochemical basis of the HSP syndrome,” said Cravatt.

Looking Ahead

Future projects in this line of inquiry, he adds, include a study of how triglyceride droplets in neurons lead to impairments of movement and cognition, and research on potential therapies to counter these effects, including the possible use of diacylglycerol transferase (DGAT) inhibitors, which reduce the natural production of triglycerides.

Cravatt also notes that the same approach used in this study can be applied to other enzymes in DDHD2’s class (serine hydrolases), whose dysfunctions cause human neurological disorders.

Other contributors to the study, “The hereditary spastic paraplegia-related enzyme DDHD2 is a principal brain triglyceride lipase,” were Melissa M. Dix, Andreu Viader, Kim Masuda, Thais Takei and Malcolm R. Wood, all of TSRI. Ku-Lung Hsu is now an assistant professor of chemistry at the University of Virginia.

Support for the study came from the National Institutes of Health (DA033760, DK099810, DA035864 and GM109315).

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation.

For more information, see www.scripps.edu

Madeline McCurry-Schmidt | newswise

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>