Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research Institute Scientists Shed Light on Cause of Spastic Paraplegia

30.09.2014

The findings point the way to potential therapies and showcase an investigative strategy

Scientists at The Scripps Research Institute (TSRI) have discovered that a gene mutation linked to hereditary spastic paraplegia, a disabling neurological disorder, interferes with the normal breakdown of triglyceride fat molecules in the brain. The TSRI researchers found large droplets of triglycerides within the neurons of mice modeling the disease.


Courtesy of The Scripps Research Institute.

Professor Benjamin Cravatt is chair of the Department of Chemical Physiology at The Scripps Research Institute.

The findings, reported this week online ahead of print by the journal Proceedings of the National Academy of Sciences, point the way to potential therapies and showcase an investigative strategy that should be useful in determining the biochemical causes of other genetic illnesses. Scientists in recent decades have linked thousands of gene mutations to human diseases, yet many of the genes in question code for proteins of unknown function.

“We often need to understand the protein function that is disrupted by a gene mutation, if we’re going to understand the mechanistic basis for the disease and move towards developing a therapy, and that is what we’ve tried to do here,” said Benjamin F. Cravatt, professor and chair of TSRI’s Department of Chemical Physiology.

There is currently no treatment for hereditary spastic paraplegia (HSP), a set of genetic illnesses whose symptoms include muscle weakness and stiffness, and in some cases cognitive impairments. About 100,000 people worldwide live with HSP.

Uncovering Clues

In the new study, Cravatt and members of his laboratory, including graduate student Jordon Inloes and postdoctoral fellow Ku-Lung Hsu, focused on DDHD2, an enzyme of unclear function whose gene is mutated in a subset of HSP cases. “These cases involving DDHD2 disruption feature cognitive defects as well as spasticity and muscle wasting, so they’re among the more devastating forms of this illness,” said Cravatt.

To start, the researchers created a mouse model of DDHD2-related HSP, in which a targeted deletion from the DDHD2 gene eliminated the expression of the DDHD2 protein. “These mice showed symptoms similar to those of HSP patients, including abnormal gait and lower performance on tests of movement and cognition,” said Inloes.

Prior research had suggested that the DDHD2 enzyme is expressed in the brain and is involved somehow in lipid metabolism. One study reported elevated levels of an unknown fat molecule in the brains of DDHD2-mutant HSP patients. Cravatt’s team compared the tissues of the no-DDHD2 mice to the tissues of mice with normal versions of the gene, and also found that the mutant mice had much higher levels of a type of fat molecule, principally in the brain.

Using a set of sophisticated “lipidomics” tests to analyze the accumulating fat molecules, they identified them as triglycerides—a major component of stored fat in the body, and a risk factor for obesity, atherosclerosis and type 2 diabetes.

“We were able to show as well, using both light microscopy and electron microscopy, that droplets of triglyceride-rich fat are present in the neurons of DDHD2-knockout mice, in several brain regions, but are not present in normal mice,” said Inloes.

For the next phase of the study, Cravatt’s team developed a complementary tool for studying DDHD2’s function: a specific inhibitor of the DDHD2 enzyme, one of a set of powerful enzyme-blocking compounds they had identified in a study reported last year. “After four days of treatment with this inhibitor, normal mice showed an increase in brain triglycerides,” said Inloes. “This suggests that DDHD2 normally breaks down triglycerides, and its inactivity allows triglycerides to build up.”

Finally the team confirmed DDHD2’s role in triglyceride metabolism by showing that triglycerides are rapidly broken down into smaller fatty acids in its presence.
“These findings give us some insight, at least, into the biochemical basis of the HSP syndrome,” said Cravatt.

Looking Ahead

Future projects in this line of inquiry, he adds, include a study of how triglyceride droplets in neurons lead to impairments of movement and cognition, and research on potential therapies to counter these effects, including the possible use of diacylglycerol transferase (DGAT) inhibitors, which reduce the natural production of triglycerides.

Cravatt also notes that the same approach used in this study can be applied to other enzymes in DDHD2’s class (serine hydrolases), whose dysfunctions cause human neurological disorders.

Other contributors to the study, “The hereditary spastic paraplegia-related enzyme DDHD2 is a principal brain triglyceride lipase,” were Melissa M. Dix, Andreu Viader, Kim Masuda, Thais Takei and Malcolm R. Wood, all of TSRI. Ku-Lung Hsu is now an assistant professor of chemistry at the University of Virginia.

Support for the study came from the National Institutes of Health (DA033760, DK099810, DA035864 and GM109315).

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation.

For more information, see www.scripps.edu

Madeline McCurry-Schmidt | newswise

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>