Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research Institute chemists discover structure of cancer drug candidate

20.05.2014

Chemists at The Scripps Research Institute (TSRI) have determined the correct structure of a highly promising anticancer compound approved by the U.S. Food and Drug Administration (FDA) for clinical trials in cancer patients.

The new report, published this week by the international chemistry journal Angewandte Chemie, focuses on a compound called TIC10.


A new report shows the structure of a promising anticancer compound, TIC10, differs subtly but importantly from a previously published version.

Credit: Figure courtesy of The Scripps Research Institute.


A new report shows the structure of a promising anticancer compound, TIC10, differs subtly but importantly from a previously published version.

Credit: Image courtesy of The Scripps Research Institute.

In the new study, the TSRI scientists show that TIC10's structure differs subtly from a version published by another group last year, and that the previous structure associated with TIC10 in fact describes a molecule that lacks TIC10's anticancer activity.

By contrast, the correct structure describes a molecule with potent anticancer effects in animals, representing a new family of biologically active structures that can now be explored for their possible therapeutic uses.

... more about:
»NCI »TRAIL »TSRI »activity »anticancer »discover »structure »therapeutic

"This new structure should generate much interest in the cancer research community," said Kim D. Janda, the Ely R. Callaway Jr. Professor of Chemistry and member of the Skaggs Institute for Chemical Biology at TSRI.

Antitumor Potential

TIC10 was first described in a paper in the journal Science Translational Medicine in early 2013. The authors identified the compound, within a library of thousands of molecules maintained by the National Cancer Institute (NCI), for its ability to boost cells' production of a powerful natural antitumor protein, TRAIL. (TIC10 means TRAIL-Inducing Compound #10.)

As a small molecule, TIC10 would be easier to deliver in a therapy than the TRAIL protein itself. The paper, which drew widespread media coverage, reported that TIC10 was orally active and dramatically shrank a variety of tumors in mice, including notoriously treatment-resistant glioblastomas.

Tumors can develop resistance to TRAIL, but Janda had been studying compounds that defeat this resistance. The news about TIC10 therefore got his attention. "I thought, 'They have this molecule for upregulating TRAIL, and we have these molecules that can overcome tumor cell TRAIL resistance—the combination could be important,'" he said.

The original publication on TIC10 included a figure showing its predicted structure. "I saw the figure and asked one of my postdocs, Jonathan Lockner, to make some," Janda said.

Although the other team had seemingly confirmed the predicted structure with a basic technique called mass spectrometry, no one had yet published a thorough characterization of the TIC10 molecule. "There were no nuclear magnetic resonance data or X-ray crystallography data, and there was definitely no procedure for the synthesis," Lockner said. "My background was chemistry, though, so I was able to find a way to synthesize it starting from simple compounds."

Surprising Inactivity

There was just one problem with Lockner's newly synthesized "TIC10." When tested, it failed to induce TRAIL expression in cells, even at high doses.

"Of course I was nervous," remembered Lockner. "As a chemist, you never want to make a mistake and give biologists the wrong material."

To try to verify they had the right material, Janda's team obtained a sample of TIC10 directly from the NCI. "When we got that sample and tested it, we saw that it had the expected TRAIL-upregulating effect," said Nicholas Jacob, a graduate student in the Janda Laboratory who, with Lockner, was a co-lead author of the new paper. "That prompted us to look more closely at the structures of these two compounds."

The two researchers spent months characterizing their own synthesized material and the NCI material, using an array of sophisticated structural analysis tools. With Assistant Professor Vladimir V. Kravchenko of the TSRI Department of Immunology and Microbial Science, Jacob also tested the two compounds' biological effects.

The team eventually concluded that the TIC10 compound from the NCI library does boost TRAIL production in cells and remains promising as the basis for anticancer therapies, but it does not have the structure that was originally published.

The Right Structure

The originally published structure has a core made of three carbon-nitrogen rings in a straight line and does not induce TRAIL activity. The correct, TRAIL-inducing structure differs subtly, with an end ring that sticks out at an angle. In chemists' parlance, the two compounds are constitutional isomers: a linear imidazolinopyrimidinone and an angular imidazolinopyrimidinone.

Ironically, Lockner found that the angular TRAIL-inducing structure was easier to synthesize than the one originally described.

Now, with the correct molecule in hand and a solid understanding of its structure and synthesis, Janda and his team are moving forward with their original plan to study TIC10 in combination with TRAIL-resistance-thwarting molecules as an anticancer therapy.

The therapeutic implications of TIC10 may even go beyond cancer. The angular core of the TRAIL-inducing molecule discovered by Janda's team turns out to be a novel type of a biologically active structure—or "pharmacophore"—from which chemists may now be able to build a new class of candidate drugs, possibly for a variety of ailments.

"One lesson from this has got to be: don't leave your chemists behind," said Janda.

###

Funding for the research, published in a paper titled "Pharmacophore Reassignment for Induction of the Immunosurveillant TRAIL" (DOI: 10.1002/anie.201), was provided by The Skaggs Institute for Chemical Biology and TSRI. For more information on the paper, see http://onlinelibrary.wiley.com/doi/10.1002/ange.201402133/abstract.

Mika Ono | Eurek Alert!

Further reports about: NCI TRAIL TSRI activity anticancer discover structure therapeutic

More articles from Life Sciences:

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

nachricht Bio-fabrication of Artificial Blood Vessels with Laser Light
28.08.2015 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>