Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research Institute chemists discover structure of cancer drug candidate

20.05.2014

Chemists at The Scripps Research Institute (TSRI) have determined the correct structure of a highly promising anticancer compound approved by the U.S. Food and Drug Administration (FDA) for clinical trials in cancer patients.

The new report, published this week by the international chemistry journal Angewandte Chemie, focuses on a compound called TIC10.


A new report shows the structure of a promising anticancer compound, TIC10, differs subtly but importantly from a previously published version.

Credit: Figure courtesy of The Scripps Research Institute.


A new report shows the structure of a promising anticancer compound, TIC10, differs subtly but importantly from a previously published version.

Credit: Image courtesy of The Scripps Research Institute.

In the new study, the TSRI scientists show that TIC10's structure differs subtly from a version published by another group last year, and that the previous structure associated with TIC10 in fact describes a molecule that lacks TIC10's anticancer activity.

By contrast, the correct structure describes a molecule with potent anticancer effects in animals, representing a new family of biologically active structures that can now be explored for their possible therapeutic uses.

... more about:
»NCI »TRAIL »TSRI »activity »anticancer »discover »structure »therapeutic

"This new structure should generate much interest in the cancer research community," said Kim D. Janda, the Ely R. Callaway Jr. Professor of Chemistry and member of the Skaggs Institute for Chemical Biology at TSRI.

Antitumor Potential

TIC10 was first described in a paper in the journal Science Translational Medicine in early 2013. The authors identified the compound, within a library of thousands of molecules maintained by the National Cancer Institute (NCI), for its ability to boost cells' production of a powerful natural antitumor protein, TRAIL. (TIC10 means TRAIL-Inducing Compound #10.)

As a small molecule, TIC10 would be easier to deliver in a therapy than the TRAIL protein itself. The paper, which drew widespread media coverage, reported that TIC10 was orally active and dramatically shrank a variety of tumors in mice, including notoriously treatment-resistant glioblastomas.

Tumors can develop resistance to TRAIL, but Janda had been studying compounds that defeat this resistance. The news about TIC10 therefore got his attention. "I thought, 'They have this molecule for upregulating TRAIL, and we have these molecules that can overcome tumor cell TRAIL resistance—the combination could be important,'" he said.

The original publication on TIC10 included a figure showing its predicted structure. "I saw the figure and asked one of my postdocs, Jonathan Lockner, to make some," Janda said.

Although the other team had seemingly confirmed the predicted structure with a basic technique called mass spectrometry, no one had yet published a thorough characterization of the TIC10 molecule. "There were no nuclear magnetic resonance data or X-ray crystallography data, and there was definitely no procedure for the synthesis," Lockner said. "My background was chemistry, though, so I was able to find a way to synthesize it starting from simple compounds."

Surprising Inactivity

There was just one problem with Lockner's newly synthesized "TIC10." When tested, it failed to induce TRAIL expression in cells, even at high doses.

"Of course I was nervous," remembered Lockner. "As a chemist, you never want to make a mistake and give biologists the wrong material."

To try to verify they had the right material, Janda's team obtained a sample of TIC10 directly from the NCI. "When we got that sample and tested it, we saw that it had the expected TRAIL-upregulating effect," said Nicholas Jacob, a graduate student in the Janda Laboratory who, with Lockner, was a co-lead author of the new paper. "That prompted us to look more closely at the structures of these two compounds."

The two researchers spent months characterizing their own synthesized material and the NCI material, using an array of sophisticated structural analysis tools. With Assistant Professor Vladimir V. Kravchenko of the TSRI Department of Immunology and Microbial Science, Jacob also tested the two compounds' biological effects.

The team eventually concluded that the TIC10 compound from the NCI library does boost TRAIL production in cells and remains promising as the basis for anticancer therapies, but it does not have the structure that was originally published.

The Right Structure

The originally published structure has a core made of three carbon-nitrogen rings in a straight line and does not induce TRAIL activity. The correct, TRAIL-inducing structure differs subtly, with an end ring that sticks out at an angle. In chemists' parlance, the two compounds are constitutional isomers: a linear imidazolinopyrimidinone and an angular imidazolinopyrimidinone.

Ironically, Lockner found that the angular TRAIL-inducing structure was easier to synthesize than the one originally described.

Now, with the correct molecule in hand and a solid understanding of its structure and synthesis, Janda and his team are moving forward with their original plan to study TIC10 in combination with TRAIL-resistance-thwarting molecules as an anticancer therapy.

The therapeutic implications of TIC10 may even go beyond cancer. The angular core of the TRAIL-inducing molecule discovered by Janda's team turns out to be a novel type of a biologically active structure—or "pharmacophore"—from which chemists may now be able to build a new class of candidate drugs, possibly for a variety of ailments.

"One lesson from this has got to be: don't leave your chemists behind," said Janda.

###

Funding for the research, published in a paper titled "Pharmacophore Reassignment for Induction of the Immunosurveillant TRAIL" (DOI: 10.1002/anie.201), was provided by The Skaggs Institute for Chemical Biology and TSRI. For more information on the paper, see http://onlinelibrary.wiley.com/doi/10.1002/ange.201402133/abstract.

Mika Ono | Eurek Alert!

Further reports about: NCI TRAIL TSRI activity anticancer discover structure therapeutic

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>