Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research Institute chemists discover structure of cancer drug candidate

20.05.2014

Chemists at The Scripps Research Institute (TSRI) have determined the correct structure of a highly promising anticancer compound approved by the U.S. Food and Drug Administration (FDA) for clinical trials in cancer patients.

The new report, published this week by the international chemistry journal Angewandte Chemie, focuses on a compound called TIC10.


A new report shows the structure of a promising anticancer compound, TIC10, differs subtly but importantly from a previously published version.

Credit: Figure courtesy of The Scripps Research Institute.


A new report shows the structure of a promising anticancer compound, TIC10, differs subtly but importantly from a previously published version.

Credit: Image courtesy of The Scripps Research Institute.

In the new study, the TSRI scientists show that TIC10's structure differs subtly from a version published by another group last year, and that the previous structure associated with TIC10 in fact describes a molecule that lacks TIC10's anticancer activity.

By contrast, the correct structure describes a molecule with potent anticancer effects in animals, representing a new family of biologically active structures that can now be explored for their possible therapeutic uses.

... more about:
»NCI »TRAIL »TSRI »activity »anticancer »discover »structure »therapeutic

"This new structure should generate much interest in the cancer research community," said Kim D. Janda, the Ely R. Callaway Jr. Professor of Chemistry and member of the Skaggs Institute for Chemical Biology at TSRI.

Antitumor Potential

TIC10 was first described in a paper in the journal Science Translational Medicine in early 2013. The authors identified the compound, within a library of thousands of molecules maintained by the National Cancer Institute (NCI), for its ability to boost cells' production of a powerful natural antitumor protein, TRAIL. (TIC10 means TRAIL-Inducing Compound #10.)

As a small molecule, TIC10 would be easier to deliver in a therapy than the TRAIL protein itself. The paper, which drew widespread media coverage, reported that TIC10 was orally active and dramatically shrank a variety of tumors in mice, including notoriously treatment-resistant glioblastomas.

Tumors can develop resistance to TRAIL, but Janda had been studying compounds that defeat this resistance. The news about TIC10 therefore got his attention. "I thought, 'They have this molecule for upregulating TRAIL, and we have these molecules that can overcome tumor cell TRAIL resistance—the combination could be important,'" he said.

The original publication on TIC10 included a figure showing its predicted structure. "I saw the figure and asked one of my postdocs, Jonathan Lockner, to make some," Janda said.

Although the other team had seemingly confirmed the predicted structure with a basic technique called mass spectrometry, no one had yet published a thorough characterization of the TIC10 molecule. "There were no nuclear magnetic resonance data or X-ray crystallography data, and there was definitely no procedure for the synthesis," Lockner said. "My background was chemistry, though, so I was able to find a way to synthesize it starting from simple compounds."

Surprising Inactivity

There was just one problem with Lockner's newly synthesized "TIC10." When tested, it failed to induce TRAIL expression in cells, even at high doses.

"Of course I was nervous," remembered Lockner. "As a chemist, you never want to make a mistake and give biologists the wrong material."

To try to verify they had the right material, Janda's team obtained a sample of TIC10 directly from the NCI. "When we got that sample and tested it, we saw that it had the expected TRAIL-upregulating effect," said Nicholas Jacob, a graduate student in the Janda Laboratory who, with Lockner, was a co-lead author of the new paper. "That prompted us to look more closely at the structures of these two compounds."

The two researchers spent months characterizing their own synthesized material and the NCI material, using an array of sophisticated structural analysis tools. With Assistant Professor Vladimir V. Kravchenko of the TSRI Department of Immunology and Microbial Science, Jacob also tested the two compounds' biological effects.

The team eventually concluded that the TIC10 compound from the NCI library does boost TRAIL production in cells and remains promising as the basis for anticancer therapies, but it does not have the structure that was originally published.

The Right Structure

The originally published structure has a core made of three carbon-nitrogen rings in a straight line and does not induce TRAIL activity. The correct, TRAIL-inducing structure differs subtly, with an end ring that sticks out at an angle. In chemists' parlance, the two compounds are constitutional isomers: a linear imidazolinopyrimidinone and an angular imidazolinopyrimidinone.

Ironically, Lockner found that the angular TRAIL-inducing structure was easier to synthesize than the one originally described.

Now, with the correct molecule in hand and a solid understanding of its structure and synthesis, Janda and his team are moving forward with their original plan to study TIC10 in combination with TRAIL-resistance-thwarting molecules as an anticancer therapy.

The therapeutic implications of TIC10 may even go beyond cancer. The angular core of the TRAIL-inducing molecule discovered by Janda's team turns out to be a novel type of a biologically active structure—or "pharmacophore"—from which chemists may now be able to build a new class of candidate drugs, possibly for a variety of ailments.

"One lesson from this has got to be: don't leave your chemists behind," said Janda.

###

Funding for the research, published in a paper titled "Pharmacophore Reassignment for Induction of the Immunosurveillant TRAIL" (DOI: 10.1002/anie.201), was provided by The Skaggs Institute for Chemical Biology and TSRI. For more information on the paper, see http://onlinelibrary.wiley.com/doi/10.1002/ange.201402133/abstract.

Mika Ono | Eurek Alert!

Further reports about: NCI TRAIL TSRI activity anticancer discover structure therapeutic

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>