Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Florida Scientists Uncover Inflammatory Circuit That Triggers Breast Cancer

24.02.2012
Findings Point to Potentially Effective New Therapeutic Target for Cancer Treatment and Prevention

Although it’s widely accepted that inflammation is a critical underlying factor in a range of diseases, including the progression of cancer, little is known about its role when normal cells become tumor cells.

Now, scientists from the Florida campus of The Scripps Research Institute have shed new light on exactly how the activation of a pair of inflammatory signaling pathways leads to the transformation of normal breast cells to cancer cells.

The study, led by Jun-Li Luo, an assistant professor at Scripps Florida, was published online before print by the journal Molecular Cell on February 23, 2012.

The scientists’ discovery points to the activation of a self-sustaining signaling circuit that inhibits a specific RNA, a well-known tumor suppressor that helps limit the spread of cancer (metastasis). Therapies that disable this circuit and halt this miRNA repression could have the potential to treat cancer.

The Spark that Ignites Trouble

In the new study, scientists identified the specific pathways that transform breast epithelial cells into active cancer cells.

The researchers found immune/inflammatory cells ignite the transient activation of MEK/ERK and IKK/NF-kB pathways; the MEK/ERK pathway then directs a consistent activation of a signaling circuit in transformed cells. This consistent signaling circuit maintains the malignant state of the tumor cells.

Luo compares this process to starting a car—a car battery starts the engine much like the transient signal activation turns on the consistent signal circuit. Once the engine is started, it no longer needs the battery.

The scientists go on to show that the initial activation of these pathways also activates IL6, a cytokine involved in a number of inflammatory and autoimmune diseases, including cancer. IL6 acts as a tumor initiator, sparking the self-sustaining circuit in normal breast cells necessary for the initiation and maintenance of their transformed malignant state.

In establishing that self-sustaining signal circuit, IL6 represses the action of microRNA-200c, which is responsible for holding down inflammation and cell transformation. Since enhanced microRNA-200c expression impairs the growth of existing cancer cells and increases their sensitivity to anti-tumor drugs, compounds that disable microRNA-200c repression have the potential to act as a broad-spectrum therapeutic.

Interestingly, the new findings dovetail with the “multiple-hits theory” of tumor formation, which posits that once normal cells in the human body accumulate enough pre-cancerous mutations, they are at high-risk for transformation into tumor cells. While the newly described initial pathway activation is momentary and not enough to cause any lasting changes in cell behavior, it may be just enough to tip the cell’s transformation to cancer, especially if it comes on top of an accumulation of other cellular changes.

The first author of the study, “IL6-Mediated Suppression of Mir-200c Directs Constitutive Activation of an Inflammatory Signaling Circuit That Drives Transformation and Tumorigenesis,” is Matjaz Rokavec of Scripps Research. Other authors include Weilin Wu, also of Scripps Research.

The study was supported by the National Institute of Health, the United States Department of Defense, the Florida Department of Health, and Frenchman’s Creek Women for Cancer Research.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation. For more information, see www.scripps.edu.
For information:
Mika Ono
Tel: 858-784-2052
Fax: 858-784-8136
mikaono@scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>