Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unveil secrets of important natural antibiotic

22.02.2013
An international team of scientists has discovered how an important natural antibiotic called dermcidin, produced by our skin when we sweat, is a highly efficient tool to fight tuberculosis germs and other dangerous bugs.

Their results could contribute to the development of new antibiotics that control multi-resistant bacteria.

Scientists have uncovered the atomic structure of the compound, enabling them to pinpoint for the first time what makes dermcidin such an efficient weapon in the battle against dangerous bugs.

Although about 1700 types of these natural antibiotics are known to exist, scientists did not until now have a detailed understanding of how they work.

The study, carried out by researchers from the University of Edinburgh and from Goettingen, Tuebingen and Strasbourg, is published in Proceedings of the National Academy of Sciences.

Sweat spreads highly efficient antibiotics on to our skin, which protect us from dangerous bugs. If our skin becomes injured by a small cut, a scratch, or the sting of a mosquito, antibiotic agents secreted in sweat glands, such as dermcidin, rapidly and efficiently kill invaders.

These natural substances, known as antimicrobial peptides (AMPs), are more effective in the long term than traditional antibiotics, because germs are not capable of quickly developing resistance against them.

The antimicrobials can attack the bugs' Achilles' heel – their cell wall, which cannot be modified quickly to resist attack. Because of this, AMPs have great potential to form a new generation of antibiotics.

Scientists have known for some time that dermcidin is activated in salty, slightly acidic sweat. The molecule then forms tiny channels perforating the cell membrane of bugs, which are stabilised by charged particles of zinc present in sweat. As a consequence, water and charged particles flow uncontrollably across the membrane, eventually killing the harmful microbes.

Through a combination of techniques, scientists were able to determine the atomic structure of the molecular channel. They found that it is unusually long, permeable and adaptable, and so represents a new class of membrane protein.

The team also discovered that dermcidin can adapt to extremely variable types of membrane. Scientists say this could explain why active dermcidin is such an efficient broad-spectrum antibiotic, able to fend off bacteria and fungi at the same time.

The compound is active against many well-known pathogens such as tuberculosis, Mycobacterium tuberculosis, or Staphylococcus aureus. Multi-resistant strains of Staphylococcus aureus, in particular, have become an increasing threat for hospital patients. They are insensitive towards conventional antibiotics and so are difficult to treat. Staphylococcus aureus infections can lead to life-threatening diseases such as sepsis and pneumonia. The international team of scientists hopes that their results can contribute to the development of a new class of antibiotics that is able to attack such dangerous germs.

Dr Ulrich Zachariae of the University of Edinburgh's School of Physics, who took part in the study, said: "Antibiotics are not only available on prescription. Our own bodies produce efficient substances to fend off bacteria, fungi and viruses. Now that we know in detail how these natural antibiotics work, we can use this to help develop infection-fighting drugs that are more effective than conventional antibiotics."

Catriona Kelly | EurekAlert!
Further information:
http://www.ed.ac.uk

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>