Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unveil secrets of important natural antibiotic

22.02.2013
An international team of scientists has discovered how an important natural antibiotic called dermcidin, produced by our skin when we sweat, is a highly efficient tool to fight tuberculosis germs and other dangerous bugs.

Their results could contribute to the development of new antibiotics that control multi-resistant bacteria.

Scientists have uncovered the atomic structure of the compound, enabling them to pinpoint for the first time what makes dermcidin such an efficient weapon in the battle against dangerous bugs.

Although about 1700 types of these natural antibiotics are known to exist, scientists did not until now have a detailed understanding of how they work.

The study, carried out by researchers from the University of Edinburgh and from Goettingen, Tuebingen and Strasbourg, is published in Proceedings of the National Academy of Sciences.

Sweat spreads highly efficient antibiotics on to our skin, which protect us from dangerous bugs. If our skin becomes injured by a small cut, a scratch, or the sting of a mosquito, antibiotic agents secreted in sweat glands, such as dermcidin, rapidly and efficiently kill invaders.

These natural substances, known as antimicrobial peptides (AMPs), are more effective in the long term than traditional antibiotics, because germs are not capable of quickly developing resistance against them.

The antimicrobials can attack the bugs' Achilles' heel – their cell wall, which cannot be modified quickly to resist attack. Because of this, AMPs have great potential to form a new generation of antibiotics.

Scientists have known for some time that dermcidin is activated in salty, slightly acidic sweat. The molecule then forms tiny channels perforating the cell membrane of bugs, which are stabilised by charged particles of zinc present in sweat. As a consequence, water and charged particles flow uncontrollably across the membrane, eventually killing the harmful microbes.

Through a combination of techniques, scientists were able to determine the atomic structure of the molecular channel. They found that it is unusually long, permeable and adaptable, and so represents a new class of membrane protein.

The team also discovered that dermcidin can adapt to extremely variable types of membrane. Scientists say this could explain why active dermcidin is such an efficient broad-spectrum antibiotic, able to fend off bacteria and fungi at the same time.

The compound is active against many well-known pathogens such as tuberculosis, Mycobacterium tuberculosis, or Staphylococcus aureus. Multi-resistant strains of Staphylococcus aureus, in particular, have become an increasing threat for hospital patients. They are insensitive towards conventional antibiotics and so are difficult to treat. Staphylococcus aureus infections can lead to life-threatening diseases such as sepsis and pneumonia. The international team of scientists hopes that their results can contribute to the development of a new class of antibiotics that is able to attack such dangerous germs.

Dr Ulrich Zachariae of the University of Edinburgh's School of Physics, who took part in the study, said: "Antibiotics are not only available on prescription. Our own bodies produce efficient substances to fend off bacteria, fungi and viruses. Now that we know in detail how these natural antibiotics work, we can use this to help develop infection-fighting drugs that are more effective than conventional antibiotics."

Catriona Kelly | EurekAlert!
Further information:
http://www.ed.ac.uk

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>