Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Unravel the Mysteries of Spider Silk

Scientists at ASU are celebrating their recent success on the path to understanding what makes the fiber that spiders spin – weight for weight – at least five times as strong as piano wire. They have found a way to obtain a wide variety of elastic properties of the silk of several intact spiders’ webs using a sophisticated but non-invasive laser light scattering technique.

“Spider silk has a unique combination of mechanical strength and elasticity that make it one of the toughest materials we know,” said Jeffery Yarger, a professor in ASU’s Department of Chemistry and Biochemistry and lead researcher of the study. “This work represents the most complete understanding we have of the underlying mechanical properties of spider silks.”

Jeffery Yarger/ASU

Female Nephila clavipes on her web. The web was characterized by the ASU team using Brillouin spectroscopy to directly and non-invasively determine the mechanical properties.

Spider silk is an exceptional biological polymer, related to collagen (the stuff of skin and bones) but much more complex in its structure. The ASU team of chemists is studying its molecular structure in an effort to produce materials ranging from bulletproof vests to artificial tendons.

The extensive array of elastic and mechanical properties of spider silks in situ, obtained by the ASU team, is the first of its kind and will greatly facilitate future modeling efforts aimed at understanding the interplay of the mechanical properties and the molecular structure of silk used to produce spider webs.

The team published their results in today’s advanced online issue of Nature materials and their paper is titled “Non-invasive determination of the complete elastic moduli of spider silks.”

“This information should help provide a blueprint for structural engineering of an abundant array of bio-inspired materials, such as precise materials engineering of synthetic fibers to create stronger, stretchier and more elastic materials,” explained Yarger.

Other members of Yarger’s team, in ASU’s College of Liberal Arts and Sciences, included Kristie Koski, at the time a postdoctoral researcher and currently a postdoctoral fellow at Stanford University, and ASU undergraduate students Paul Akhenblit and Keri McKiernan.

The Brillouin light scattering technique used an extremely low power laser, less than 3.5 milliwatts, which is significantly less than the average laser pointer. Recording what happened to this laser beam as it passed through the intact spider webs enabled the researchers to spatially map the elastic stiffnesses of each web without deforming or disrupting it. This non-invasive, non-contact measurement produced findings showing variations among discrete fibers, junctions and glue spots.

Four different types of spider webs were studied. They included Nephila clavipes (pictured), A. aurantia (“gilded silver face”-common to the contiguous United States), L. Hesperus, the western black widow and P. viridans, the green lynx spider, the only spider included that does not build a web for catching prey but has major silk elastic properties similar to those of the other species studied.

The group also investigated one of the most studied aspects of orb-weaving dragline spider silk, namely supercontraction, a property unique to silk. Spider silk takes up water when exposed to high humidity. Absorbed water leads to shrinkage in an unrestrained fiber up to 50 percent shrinkage with 100 percent humidity in N. clavipes silk.

Their results are consistent with the hypothesis that supercontraction helps the spider tailor the properties of the silk during spinning. This type of behavior, specifically adjusting mechanical properties by simply adjusting water content, is inspirational from a bio-inspired mechanical structure perspective.

“This study is unique in that we can extract all the elastic properties of spider silk that cannot and have not been measured with conventional testing,” concluded Yarger.

The Department of Defense and the National Science Foundation supported this research.

Jenny Green,
Department of Chemistry and Biochemistry
Jeffery Yarger,

Jenny Green | Newswise
Further information:

More articles from Life Sciences:

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

nachricht Activation of 2 genes linked to development of atherosclerosis
28.10.2016 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>