Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Unravel the Mysteries of Spider Silk

30.01.2013
Scientists at ASU are celebrating their recent success on the path to understanding what makes the fiber that spiders spin – weight for weight – at least five times as strong as piano wire. They have found a way to obtain a wide variety of elastic properties of the silk of several intact spiders’ webs using a sophisticated but non-invasive laser light scattering technique.

“Spider silk has a unique combination of mechanical strength and elasticity that make it one of the toughest materials we know,” said Jeffery Yarger, a professor in ASU’s Department of Chemistry and Biochemistry and lead researcher of the study. “This work represents the most complete understanding we have of the underlying mechanical properties of spider silks.”


Jeffery Yarger/ASU

Female Nephila clavipes on her web. The web was characterized by the ASU team using Brillouin spectroscopy to directly and non-invasively determine the mechanical properties.

Spider silk is an exceptional biological polymer, related to collagen (the stuff of skin and bones) but much more complex in its structure. The ASU team of chemists is studying its molecular structure in an effort to produce materials ranging from bulletproof vests to artificial tendons.

The extensive array of elastic and mechanical properties of spider silks in situ, obtained by the ASU team, is the first of its kind and will greatly facilitate future modeling efforts aimed at understanding the interplay of the mechanical properties and the molecular structure of silk used to produce spider webs.

The team published their results in today’s advanced online issue of Nature materials and their paper is titled “Non-invasive determination of the complete elastic moduli of spider silks.”

“This information should help provide a blueprint for structural engineering of an abundant array of bio-inspired materials, such as precise materials engineering of synthetic fibers to create stronger, stretchier and more elastic materials,” explained Yarger.

Other members of Yarger’s team, in ASU’s College of Liberal Arts and Sciences, included Kristie Koski, at the time a postdoctoral researcher and currently a postdoctoral fellow at Stanford University, and ASU undergraduate students Paul Akhenblit and Keri McKiernan.

The Brillouin light scattering technique used an extremely low power laser, less than 3.5 milliwatts, which is significantly less than the average laser pointer. Recording what happened to this laser beam as it passed through the intact spider webs enabled the researchers to spatially map the elastic stiffnesses of each web without deforming or disrupting it. This non-invasive, non-contact measurement produced findings showing variations among discrete fibers, junctions and glue spots.

Four different types of spider webs were studied. They included Nephila clavipes (pictured), A. aurantia (“gilded silver face”-common to the contiguous United States), L. Hesperus, the western black widow and P. viridans, the green lynx spider, the only spider included that does not build a web for catching prey but has major silk elastic properties similar to those of the other species studied.

The group also investigated one of the most studied aspects of orb-weaving dragline spider silk, namely supercontraction, a property unique to silk. Spider silk takes up water when exposed to high humidity. Absorbed water leads to shrinkage in an unrestrained fiber up to 50 percent shrinkage with 100 percent humidity in N. clavipes silk.

Their results are consistent with the hypothesis that supercontraction helps the spider tailor the properties of the silk during spinning. This type of behavior, specifically adjusting mechanical properties by simply adjusting water content, is inspirational from a bio-inspired mechanical structure perspective.

“This study is unique in that we can extract all the elastic properties of spider silk that cannot and have not been measured with conventional testing,” concluded Yarger.

The Department of Defense and the National Science Foundation supported this research.

Jenny Green, jenny.green@asu.edu
480-965-1430
Department of Chemistry and Biochemistry
Source:
Jeffery Yarger, jyarger@gmail.com
480-965-0673

Jenny Green | Newswise
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht Perseus translates proteomics data
27.07.2016 | Max-Planck-Institut für Biochemie

nachricht Severity of enzyme deficiency central to favism
26.07.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New study reveals where MH370 debris more likely to be found

27.07.2016 | Earth Sciences

Dirty to drinkable

27.07.2016 | Materials Sciences

Exploring one of the largest salt flats in the world

27.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>