Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Unmask Key HIV Protein, Open Door for New AIDS Drugs

26.09.2008
University of Michigan scientists have provided the most detailed picture yet of a key HIV accessory protein that foils the body’s normal immune response. Based on the findings, which appear online in the journal PLoS Pathogens, the team is searching for new drugs that may someday allow infected people to be cured and no longer need today’s AIDS drugs for a lifetime.

“There’s a big hole in current therapies, in that all of them prevent new infection, but none attack the cells that are already infected and hidden from the immune response,” says Kathleen L. Collins, M.D., Ph.D., the study’s senior author and a U-M associate professor in both internal medicine and microbiology and immunology.

In people infected with HIV (human immunodeficiency virus), the virus that causes AIDS, there’s an unsolved problem with current anti-viral drugs. Though life-saving, they cannot root the virus out of the body. Infected cells are able to live on, undetected by the immune system, and provide the machinery for the virus to reproduce and spread.

“People have to be on the existing drugs, and when they’re not, the virus rebounds. If we can develop drugs that seek out and eradicate the remaining factories for the virus, then maybe we could eradicate the disease in that person,” Collins says.

Research details:
The new research details the complex actions of a protein, HIV-1 Nef, that is known to keep immune system cells from doing their normal jobs of detecting and killing infected cells.

Collins and her team show how Nef disables two key immune system players inside an infected cell. These are molecules called major histocompatability complex 1 proteins (MHC-1) that present HIV antigens to the immune system, and CD4, the cell-surface receptor that normally locks onto a virus and allows it to enter the cell.

Collins likens MHC-1 to motion detectors on a house, which send the first signal to a monitoring station if an invader breaks in.

“The immune system, especially the cytotoxic T lymphocytes, are like the monitors who get the signal that there’s a foreign invader inside the cell, and send out police cars,” she says. “The ‘police’ are toxic chemicals produced by T lymphocyte cells, which kill the cell that harbors the invader.”

By in effect pushing the MHC-I proteins into an infected cell’s “trash bin” so they fail to alert the T lymphocytes, Nef’s actions allow active virus to hide undetected and reproduce. Also, once a cell has been infected, Nef destroys CD4. The result is that this encourages new virus to spread to uninfected cells.

Nef’s activities are variable and complex. But the research team’s findings suggest that the many pathways involved may end in a final common step. That could make it possible to find a drug that could block several Nef functions.

Implications:
Collins’ lab is now screening drug candidates to find promising Nef inhibitors. Such drugs, which are at least 10 years away from use in people, would supplement, not replace, existing anti-viral drugs given to HIV-infected people. The new drugs would target the reservoirs where the virus hides.

In developing countries, the new drugs could have a huge impact, Collins says. Today, children born with HIV infection start taking the existing anti-HIV drugs at birth. It’s very hard to continue costly treatments for a lifetime. But if children could be cured within a few years, global HIV treatment efforts could spread their dollars further and be much more successful, she says.

Additional U-M authors are first author Malinda R. Schaefer, Ph.D.; Elizabeth R. Wonderlich, Jeremiah F. Roeth and Jolie A. Leonard.

Funding for the research came from the National Institutes of Health and U-M.

Citation: PLoS Pathogens, doi:10.1371/journal.ppat.1000131

Anne Rueter | Newswise Science News
Further information:
http://www.umich.edu

Further reports about: Aids CD4 HIV MHC-1 Nef Protein drugs immune immune system infected infected cells lymphocyte pathogens

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>