Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Unmask Key HIV Protein, Open Door for New AIDS Drugs

26.09.2008
University of Michigan scientists have provided the most detailed picture yet of a key HIV accessory protein that foils the body’s normal immune response. Based on the findings, which appear online in the journal PLoS Pathogens, the team is searching for new drugs that may someday allow infected people to be cured and no longer need today’s AIDS drugs for a lifetime.

“There’s a big hole in current therapies, in that all of them prevent new infection, but none attack the cells that are already infected and hidden from the immune response,” says Kathleen L. Collins, M.D., Ph.D., the study’s senior author and a U-M associate professor in both internal medicine and microbiology and immunology.

In people infected with HIV (human immunodeficiency virus), the virus that causes AIDS, there’s an unsolved problem with current anti-viral drugs. Though life-saving, they cannot root the virus out of the body. Infected cells are able to live on, undetected by the immune system, and provide the machinery for the virus to reproduce and spread.

“People have to be on the existing drugs, and when they’re not, the virus rebounds. If we can develop drugs that seek out and eradicate the remaining factories for the virus, then maybe we could eradicate the disease in that person,” Collins says.

Research details:
The new research details the complex actions of a protein, HIV-1 Nef, that is known to keep immune system cells from doing their normal jobs of detecting and killing infected cells.

Collins and her team show how Nef disables two key immune system players inside an infected cell. These are molecules called major histocompatability complex 1 proteins (MHC-1) that present HIV antigens to the immune system, and CD4, the cell-surface receptor that normally locks onto a virus and allows it to enter the cell.

Collins likens MHC-1 to motion detectors on a house, which send the first signal to a monitoring station if an invader breaks in.

“The immune system, especially the cytotoxic T lymphocytes, are like the monitors who get the signal that there’s a foreign invader inside the cell, and send out police cars,” she says. “The ‘police’ are toxic chemicals produced by T lymphocyte cells, which kill the cell that harbors the invader.”

By in effect pushing the MHC-I proteins into an infected cell’s “trash bin” so they fail to alert the T lymphocytes, Nef’s actions allow active virus to hide undetected and reproduce. Also, once a cell has been infected, Nef destroys CD4. The result is that this encourages new virus to spread to uninfected cells.

Nef’s activities are variable and complex. But the research team’s findings suggest that the many pathways involved may end in a final common step. That could make it possible to find a drug that could block several Nef functions.

Implications:
Collins’ lab is now screening drug candidates to find promising Nef inhibitors. Such drugs, which are at least 10 years away from use in people, would supplement, not replace, existing anti-viral drugs given to HIV-infected people. The new drugs would target the reservoirs where the virus hides.

In developing countries, the new drugs could have a huge impact, Collins says. Today, children born with HIV infection start taking the existing anti-HIV drugs at birth. It’s very hard to continue costly treatments for a lifetime. But if children could be cured within a few years, global HIV treatment efforts could spread their dollars further and be much more successful, she says.

Additional U-M authors are first author Malinda R. Schaefer, Ph.D.; Elizabeth R. Wonderlich, Jeremiah F. Roeth and Jolie A. Leonard.

Funding for the research came from the National Institutes of Health and U-M.

Citation: PLoS Pathogens, doi:10.1371/journal.ppat.1000131

Anne Rueter | Newswise Science News
Further information:
http://www.umich.edu

Further reports about: Aids CD4 HIV MHC-1 Nef Protein drugs immune immune system infected infected cells lymphocyte pathogens

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>