Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Uncover Process Enabling Toxoplasmosis Parasite to Survive Homelessness

21.09.2010
The parasite responsible for toxoplasmosis requires a stress response system that helps it survive the move to infect new cells, Indiana University School of Medicine scientists have reported, a discovery that could lead to new treatments to control the disease.

Parasites such as Toxoplasma gondii invade host cells, replicate and then must exit to find new host cells to invade. Traveling outside their host cell exposes the parasites to environmental stresses that limit how long they can remain viable while searching for new host cells.

The researchers found that the parasite triggers a stress response mechanism that alters protein production through phosphorylation of a factor called eIF2, which the Toxoplasma parasite uses to survive periods when it finds itself without a host cell. Phosphorylation is a cellular process in which a phosphate compound is added to a protein to alter its activity.

“Toxoplasma does not like to be homeless,” said William J. Sullivan Jr., Ph.D., associate professor of pharmacology and toxicology. “Being deprived of the nutrients and shelter provided by the host cell is a serious stress on the parasite. Our research uncovered a critical pathway the parasite uses to survive the journey from one host cell to another.”

The report is being published this week in the online early edition of the Proceedings of the National Academy of Sciences. In addition to Sullivan, the researcher team included Ronald C. Wek, Ph.D., professor of biochemistry and molecular biology; lead author and postdoctoral fellow Bradley Joyce, Ph.D., and Sherry F. Queener, Ph.D., professor of pharmacology and toxicology.

Based on earlier research, the group previously reported that the same response system is employed by the parasite when its host cell is stressed, which enables Toxoplasma to transform into a cyst surrounded by a protective barrier that can resist drugs and the body's immune system. Later, however, the parasite can emerge from its dormant state to strike when a patient’s immune system is weakened.

“Our latest findings indicate that if we design new drugs that target this stress response pathway, these drugs may be effective against both acute and chronic Toxoplasma infection,” says Dr. Sullivan.

An estimated 60 million people in the United States are infected with the toxoplasmosis parasite, but for most infection produces flu-like symptoms or no symptoms at all. However, for people with an impaired immune system – such as those undergoing chemotherapy, heart transplants, or people with AIDS – the disease can cause life-threatening complications including cardiopulmonary problems, blurred vision and seizures. Also, if a woman becomes infected for the first time shortly before or during pregnancy, there is risk of miscarriage or congenital birth defects.

Support for this research was provided through grants from the American Heart Association and the National Institutes of Health.

Eric Schoch | EurekAlert!
Further information:
http://www.iupui.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>