Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Uncover Process Enabling Toxoplasmosis Parasite to Survive Homelessness

The parasite responsible for toxoplasmosis requires a stress response system that helps it survive the move to infect new cells, Indiana University School of Medicine scientists have reported, a discovery that could lead to new treatments to control the disease.

Parasites such as Toxoplasma gondii invade host cells, replicate and then must exit to find new host cells to invade. Traveling outside their host cell exposes the parasites to environmental stresses that limit how long they can remain viable while searching for new host cells.

The researchers found that the parasite triggers a stress response mechanism that alters protein production through phosphorylation of a factor called eIF2, which the Toxoplasma parasite uses to survive periods when it finds itself without a host cell. Phosphorylation is a cellular process in which a phosphate compound is added to a protein to alter its activity.

“Toxoplasma does not like to be homeless,” said William J. Sullivan Jr., Ph.D., associate professor of pharmacology and toxicology. “Being deprived of the nutrients and shelter provided by the host cell is a serious stress on the parasite. Our research uncovered a critical pathway the parasite uses to survive the journey from one host cell to another.”

The report is being published this week in the online early edition of the Proceedings of the National Academy of Sciences. In addition to Sullivan, the researcher team included Ronald C. Wek, Ph.D., professor of biochemistry and molecular biology; lead author and postdoctoral fellow Bradley Joyce, Ph.D., and Sherry F. Queener, Ph.D., professor of pharmacology and toxicology.

Based on earlier research, the group previously reported that the same response system is employed by the parasite when its host cell is stressed, which enables Toxoplasma to transform into a cyst surrounded by a protective barrier that can resist drugs and the body's immune system. Later, however, the parasite can emerge from its dormant state to strike when a patient’s immune system is weakened.

“Our latest findings indicate that if we design new drugs that target this stress response pathway, these drugs may be effective against both acute and chronic Toxoplasma infection,” says Dr. Sullivan.

An estimated 60 million people in the United States are infected with the toxoplasmosis parasite, but for most infection produces flu-like symptoms or no symptoms at all. However, for people with an impaired immune system – such as those undergoing chemotherapy, heart transplants, or people with AIDS – the disease can cause life-threatening complications including cardiopulmonary problems, blurred vision and seizures. Also, if a woman becomes infected for the first time shortly before or during pregnancy, there is risk of miscarriage or congenital birth defects.

Support for this research was provided through grants from the American Heart Association and the National Institutes of Health.

Eric Schoch | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>