Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover Ebola cell-invasion strategy

05.09.2008
Discovery could lead to therapies for deadly viral infection

University of Texas Medical Branch at Galveston researchers have discovered a key biochemical link in the process by which the Ebola Zaire virus infects cells — a critical step to finding a way to treat the deadly disease produced by the virus.

Ebola produces severe and often fatal hemorrhagic fever in its victims and inflicts mortality rates close to 90 percent in some outbreaks. No vaccine or antiviral therapy has been developed against the virus, and it is considered a high-risk agent for bioterrorism. In addition, recent devastating outbreaks hit in Uganda in 2008 and the Democratic Republic of the Congo in 2007.

The UTMB group tied Ebola's cellular invasion mechanism to a series of biochemical reactions called the phophoinositide-3 kinase pathway (named for an enzyme found in the cell membrane). By activating the PI3 kinase pathway, they found, an Ebola virus particle tricks the cell into drawing it into a bubble-like compartment known as an endosome, which is pulled, together with the virus, into the cell. Then – at a critical point — the virus bursts free from the endosome and begins to reproduce itself.

However, if the PI3 kinase pathway is shut down — as the UTMB team did with a drug designed for that purpose — Ebola virus particles can't escape from the endosome, and the disease process comes to a halt.

"The nice part about identifying entry mechanisms is you can prevent the virus from infecting the cell," said UTMB microbiology and immunology associate professor Robert Davey, senior author of a paper on the investigation appearing online in the current issue of the journal PloS Pathogens. "You can stop the whole show before it even gets started."

The researchers did some of their work using the Ebola Zaire virus itself, working in UTMB's Robert E. Shope, MD, Biosafety Level 4 laboratory to ensure their safety. They also conducted experiments using harmless, hollow, virus-like particles coated with the critical envelope proteins that activate the PI3 kinase pathway.

Using a unique test created at UTMB that adds a light-emitting molecular beacon, called luciferase, to Ebola viruses and the virus-like particles, the investigators were able to determine exactly when and where each broke out of its bubble, and track its progress.

"Up to that point, it's really a bus ride for these viruses, and PI3 kinase is the bus driver," Davey said. "Whether you're talking about Ebola or Ebola virus-like particles, they've all got the virus envelope proteins that trigger the PI3 kinase pathway, which is the first step of getting the virus onto that bus."

Davey noted that while other viruses had been found that activated the PI3 kinase pathway, Ebola was the first with envelope proteins that had been seen doing so. In addition, he said, it was the first virus to be discovered interacting with the PI3 kinase pathway in order to enter cells, which could have profound implications.

"It's actually triggering the reorganizing of the cell for its own devious outcomes — infecting the cell," Davey said. "But there are other possible outcomes of fiddling around with the PI3 kinase. You can get the cell to move, you can get it to live longer, all advantages for a virus. So I'm sure that this is going to be important in other viruses."

In addition, a new generation of drugs are being developed that target PI3 kinase, since the enzyme is often activated in cancers. It is possible that these could also be used to defend against Ebola virus.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>