Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover Achilles heel of chronic inflammatory pain

18.08.2010
Researchers have made a discovery that could lead to a brand new class of drugs to treat chronic pain caused by inflammatory conditions such as arthritis and back pain without numbing the whole body.

The team, funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and working at UCL (University College London), have shown for the first time that genes involved in chronic pain are regulated by molecules inside cells called small RNAs. This mechanism is so different from what has already been discovered about the biology underpinning pain that it could be the Achilles heel of chronic inflammatory pain, which is notoriously difficult to treat. The research appears in The Journal of Neuroscience.

Lead researcher Professor John Wood from UCL said "When a person experiences chronic pain as a result of some sort of inflammation - as in arthritis - their pain threshold goes down very dramatically. What they can normally do without pain, such as walking or putting on clothes, becomes very painful.

"Chronic inflammatory pain can be treated with pain-killing drugs - analgesics - but these usually have an impact on the whole body and may also dull our experience of acute pain, which is actually very important as it protects us from injury. Just imagine if you didn't get a sharp pain when you accidentally touch the oven - you wouldn't be compelled to take your hand away quickly and could end up with a serious burn.

"What we would really like to be able to do is return the pain thresholds to normal in a person who has chronic inflammatory pain, rather than just numbing the whole body. This would mean that they still get the protection of acute pain. Currently, aspirin-like drugs that can do this have a number of side effects but the present discovery might make it possible to invent a class of drugs that act in a completely novel way."

The researchers studied mice that lack an enzyme called Dicer in some of their nerve cells and found that they respond normally to acute pain but don't seem to be bothered by anything that would usually cause chronic inflammatory pain. This is because Dicer makes small RNAs, which they now know are required for regulation of genes involved in chronic inflammatory pain. Without Dicer the small RNAs aren't made and without the small RNAs many of these genes are expressed at low levels. So, for example, molecules such as sodium channels that make pain nerves responsive to inflammation are produced at low levels and therefore inflammatory pain is not detected by the mouse's body.

Professor Wood concluded "Knowing that small RNAs are so important in chronic inflammatory pain provides a new avenue for developing drugs for some of the most debilitating and life-long conditions out there. We have identified small RNAs, which are possible drug targets"

Professor Douglas Kell, BBSRC Chief Executive said "It is extremely important to be able to find out as much as possible about the fundamental processes of 'normal' biology, as a vehicle for understanding what may go wrong. Because these researchers have made efforts to unpick what is happening at a molecular level in our nerves, they have been able to lay the groundwork for future drug development in the important area of chronic pain. This is an excellent example of the basic research we have to do to help ensure that our increasing lifespan does not mean that the later years of our lives are spent in ill health and discomfort."

Notes to editors
This research is published in The Journal of Neuroscience. An online edition of the research paper is available as follows:

Zhao et al., "Small RNAs Control Sodium Channel Expression, Nociceptor Excitability, and Pain Thresholds", The Journal of Neuroscience, 2010, 30(32):10860-10871; doi:10.1523/JNEUROSCI.1980-10.2010 at: http://bit.ly/c5BQKv

About UCL
Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender, and the first to provide systematic teaching of law, architecture and medicine. UCL is the fourth-ranked university in the 2009 THES-QS World University Rankings. UCL alumni include Marie Stopes, Jonathan Dimbleby, Lord Woolf, Alexander Graham Bell, and members of the band Coldplay. UCL currently has over 12,000 undergraduate and 8,000 postgraduate students. Its annual income is over £600M.
About BBSRC
BBSRC is the UK funding agency for research in the life sciences. Sponsored by Government, BBSRC annually invests around £470M in a wide range of research that makes a significant contribution to the quality of life in the UK and beyond and supports a number of important industrial stakeholders, including the agriculture, food, chemical, healthcare and pharmaceutical sectors.

BBSRC provides institute strategic research grants to the following:

The Babraham Institute
Institute for Animal Health
Institute for Biological, Environmental and Rural Studies (Aberystwyth University)
Institute of Food Research
John Innes Centre
The Genome Analysis Centre
The Roslin Institute (University of Edinburgh)
Rothamsted Research
The Institutes conduct long-term, mission-oriented research using specialist facilities. They have strong interactions with industry, Government departments and other end-users of their research.
Contact
Nancy Mendoza, Senior Media Officer
nancy.mendoza@bbsrc.ac.uk
tel: 01793 413355
fax: 01793 413382
Tracey Jewitt, Media Officer
tracey.jewitt@bbsrc.ac.uk
tel: 01793 414694
fax: 01793 413382
Matt Goode, Deputy Head of External Relations
matt.goode@bbsrc.ac.uk
tel: 01793 413299
fax: 01793 413382

Nancy Mendoza | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>