Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover Achilles heel of chronic inflammatory pain

18.08.2010
Researchers have made a discovery that could lead to a brand new class of drugs to treat chronic pain caused by inflammatory conditions such as arthritis and back pain without numbing the whole body.

The team, funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and working at UCL (University College London), have shown for the first time that genes involved in chronic pain are regulated by molecules inside cells called small RNAs. This mechanism is so different from what has already been discovered about the biology underpinning pain that it could be the Achilles heel of chronic inflammatory pain, which is notoriously difficult to treat. The research appears in The Journal of Neuroscience.

Lead researcher Professor John Wood from UCL said "When a person experiences chronic pain as a result of some sort of inflammation - as in arthritis - their pain threshold goes down very dramatically. What they can normally do without pain, such as walking or putting on clothes, becomes very painful.

"Chronic inflammatory pain can be treated with pain-killing drugs - analgesics - but these usually have an impact on the whole body and may also dull our experience of acute pain, which is actually very important as it protects us from injury. Just imagine if you didn't get a sharp pain when you accidentally touch the oven - you wouldn't be compelled to take your hand away quickly and could end up with a serious burn.

"What we would really like to be able to do is return the pain thresholds to normal in a person who has chronic inflammatory pain, rather than just numbing the whole body. This would mean that they still get the protection of acute pain. Currently, aspirin-like drugs that can do this have a number of side effects but the present discovery might make it possible to invent a class of drugs that act in a completely novel way."

The researchers studied mice that lack an enzyme called Dicer in some of their nerve cells and found that they respond normally to acute pain but don't seem to be bothered by anything that would usually cause chronic inflammatory pain. This is because Dicer makes small RNAs, which they now know are required for regulation of genes involved in chronic inflammatory pain. Without Dicer the small RNAs aren't made and without the small RNAs many of these genes are expressed at low levels. So, for example, molecules such as sodium channels that make pain nerves responsive to inflammation are produced at low levels and therefore inflammatory pain is not detected by the mouse's body.

Professor Wood concluded "Knowing that small RNAs are so important in chronic inflammatory pain provides a new avenue for developing drugs for some of the most debilitating and life-long conditions out there. We have identified small RNAs, which are possible drug targets"

Professor Douglas Kell, BBSRC Chief Executive said "It is extremely important to be able to find out as much as possible about the fundamental processes of 'normal' biology, as a vehicle for understanding what may go wrong. Because these researchers have made efforts to unpick what is happening at a molecular level in our nerves, they have been able to lay the groundwork for future drug development in the important area of chronic pain. This is an excellent example of the basic research we have to do to help ensure that our increasing lifespan does not mean that the later years of our lives are spent in ill health and discomfort."

Notes to editors
This research is published in The Journal of Neuroscience. An online edition of the research paper is available as follows:

Zhao et al., "Small RNAs Control Sodium Channel Expression, Nociceptor Excitability, and Pain Thresholds", The Journal of Neuroscience, 2010, 30(32):10860-10871; doi:10.1523/JNEUROSCI.1980-10.2010 at: http://bit.ly/c5BQKv

About UCL
Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender, and the first to provide systematic teaching of law, architecture and medicine. UCL is the fourth-ranked university in the 2009 THES-QS World University Rankings. UCL alumni include Marie Stopes, Jonathan Dimbleby, Lord Woolf, Alexander Graham Bell, and members of the band Coldplay. UCL currently has over 12,000 undergraduate and 8,000 postgraduate students. Its annual income is over £600M.
About BBSRC
BBSRC is the UK funding agency for research in the life sciences. Sponsored by Government, BBSRC annually invests around £470M in a wide range of research that makes a significant contribution to the quality of life in the UK and beyond and supports a number of important industrial stakeholders, including the agriculture, food, chemical, healthcare and pharmaceutical sectors.

BBSRC provides institute strategic research grants to the following:

The Babraham Institute
Institute for Animal Health
Institute for Biological, Environmental and Rural Studies (Aberystwyth University)
Institute of Food Research
John Innes Centre
The Genome Analysis Centre
The Roslin Institute (University of Edinburgh)
Rothamsted Research
The Institutes conduct long-term, mission-oriented research using specialist facilities. They have strong interactions with industry, Government departments and other end-users of their research.
Contact
Nancy Mendoza, Senior Media Officer
nancy.mendoza@bbsrc.ac.uk
tel: 01793 413355
fax: 01793 413382
Tracey Jewitt, Media Officer
tracey.jewitt@bbsrc.ac.uk
tel: 01793 414694
fax: 01793 413382
Matt Goode, Deputy Head of External Relations
matt.goode@bbsrc.ac.uk
tel: 01793 413299
fax: 01793 413382

Nancy Mendoza | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>