Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover Achilles heel of chronic inflammatory pain

18.08.2010
Researchers have made a discovery that could lead to a brand new class of drugs to treat chronic pain caused by inflammatory conditions such as arthritis and back pain without numbing the whole body.

The team, funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and working at UCL (University College London), have shown for the first time that genes involved in chronic pain are regulated by molecules inside cells called small RNAs. This mechanism is so different from what has already been discovered about the biology underpinning pain that it could be the Achilles heel of chronic inflammatory pain, which is notoriously difficult to treat. The research appears in The Journal of Neuroscience.

Lead researcher Professor John Wood from UCL said "When a person experiences chronic pain as a result of some sort of inflammation - as in arthritis - their pain threshold goes down very dramatically. What they can normally do without pain, such as walking or putting on clothes, becomes very painful.

"Chronic inflammatory pain can be treated with pain-killing drugs - analgesics - but these usually have an impact on the whole body and may also dull our experience of acute pain, which is actually very important as it protects us from injury. Just imagine if you didn't get a sharp pain when you accidentally touch the oven - you wouldn't be compelled to take your hand away quickly and could end up with a serious burn.

"What we would really like to be able to do is return the pain thresholds to normal in a person who has chronic inflammatory pain, rather than just numbing the whole body. This would mean that they still get the protection of acute pain. Currently, aspirin-like drugs that can do this have a number of side effects but the present discovery might make it possible to invent a class of drugs that act in a completely novel way."

The researchers studied mice that lack an enzyme called Dicer in some of their nerve cells and found that they respond normally to acute pain but don't seem to be bothered by anything that would usually cause chronic inflammatory pain. This is because Dicer makes small RNAs, which they now know are required for regulation of genes involved in chronic inflammatory pain. Without Dicer the small RNAs aren't made and without the small RNAs many of these genes are expressed at low levels. So, for example, molecules such as sodium channels that make pain nerves responsive to inflammation are produced at low levels and therefore inflammatory pain is not detected by the mouse's body.

Professor Wood concluded "Knowing that small RNAs are so important in chronic inflammatory pain provides a new avenue for developing drugs for some of the most debilitating and life-long conditions out there. We have identified small RNAs, which are possible drug targets"

Professor Douglas Kell, BBSRC Chief Executive said "It is extremely important to be able to find out as much as possible about the fundamental processes of 'normal' biology, as a vehicle for understanding what may go wrong. Because these researchers have made efforts to unpick what is happening at a molecular level in our nerves, they have been able to lay the groundwork for future drug development in the important area of chronic pain. This is an excellent example of the basic research we have to do to help ensure that our increasing lifespan does not mean that the later years of our lives are spent in ill health and discomfort."

Notes to editors
This research is published in The Journal of Neuroscience. An online edition of the research paper is available as follows:

Zhao et al., "Small RNAs Control Sodium Channel Expression, Nociceptor Excitability, and Pain Thresholds", The Journal of Neuroscience, 2010, 30(32):10860-10871; doi:10.1523/JNEUROSCI.1980-10.2010 at: http://bit.ly/c5BQKv

About UCL
Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender, and the first to provide systematic teaching of law, architecture and medicine. UCL is the fourth-ranked university in the 2009 THES-QS World University Rankings. UCL alumni include Marie Stopes, Jonathan Dimbleby, Lord Woolf, Alexander Graham Bell, and members of the band Coldplay. UCL currently has over 12,000 undergraduate and 8,000 postgraduate students. Its annual income is over £600M.
About BBSRC
BBSRC is the UK funding agency for research in the life sciences. Sponsored by Government, BBSRC annually invests around £470M in a wide range of research that makes a significant contribution to the quality of life in the UK and beyond and supports a number of important industrial stakeholders, including the agriculture, food, chemical, healthcare and pharmaceutical sectors.

BBSRC provides institute strategic research grants to the following:

The Babraham Institute
Institute for Animal Health
Institute for Biological, Environmental and Rural Studies (Aberystwyth University)
Institute of Food Research
John Innes Centre
The Genome Analysis Centre
The Roslin Institute (University of Edinburgh)
Rothamsted Research
The Institutes conduct long-term, mission-oriented research using specialist facilities. They have strong interactions with industry, Government departments and other end-users of their research.
Contact
Nancy Mendoza, Senior Media Officer
nancy.mendoza@bbsrc.ac.uk
tel: 01793 413355
fax: 01793 413382
Tracey Jewitt, Media Officer
tracey.jewitt@bbsrc.ac.uk
tel: 01793 414694
fax: 01793 413382
Matt Goode, Deputy Head of External Relations
matt.goode@bbsrc.ac.uk
tel: 01793 413299
fax: 01793 413382

Nancy Mendoza | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>