Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists turn back the clock on adult stem cells aging

21.09.2011
Researchers have shown they can reverse the aging process for human adult stem cells, which are responsible for helping old or damaged tissues regenerate.

The findings could lead to medical treatments that may repair a host of ailments that occur because of tissue damage as people age. A research group led by the Buck Institute for Research on Aging and the Georgia Institute of Technology conducted the study in cell culture, which appears in the September 1, 2011 edition of the journal Cell Cycle

The regenerative power of tissues and organs declines as we age. The modern day stem cell hypothesis of aging suggests that living organisms are as old as are its tissue specific or adult stem cells. Therefore, an understanding of the molecules and processes that enable human adult stem cells to initiate self-renewal and to divide, proliferate and then differentiate in order to rejuvenate damaged tissue might be the key to regenerative medicine and an eventual cure for many age-related diseases. A research group led by the Buck Institute for Research on Aging in collaboration with the Georgia Institute of Technology, conducted the study that pinpoints what is going wrong with the biological clock underlying the limited division of human adult stem cells as they age.

"We demonstrated that we were able to reverse the process of aging for human adult stem cells by intervening with the activity of non-protein coding RNAs originated from genomic regions once dismissed as non-functional 'genomic junk'," said Victoria Lunyak, associate professor at the Buck Institute for Research on Aging.

Adult stem cells are important because they help keep human tissues healthy by replacing cells that have gotten old or damaged. They're also multipotent, which means that an adult stem cell can grow and replace any number of body cells in the tissue or organ they belong to. However, just as the cells in the liver, or any other organ, can get damaged over time, adult stem cells undergo age-related damage. And when this happens, the body can't replace damaged tissue as well as it once could, leading to a host of diseases and conditions. But if scientists can find a way to keep these adult stem cells young, they could possibly use these cells to repair damaged heart tissue after a heart attack; heal wounds; correct metabolic syndromes; produce insulin for patients with type 1 diabetes; cure arthritis and osteoporosis and regenerate bone.

The team began by hypothesizing that DNA damage in the genome of adult stem cells would look very different from age-related damage occurring in regular body cells. They thought so because body cells are known to experience a shortening of the caps found at the ends of chromosomes, known as telomeres. But adult stem cells are known to maintain their telomeres. Much of the damage in aging is widely thought to be a result of losing telomeres. So there must be different mechanisms at play that are key to explaining how aging occurs in these adult stem cells, they thought.

Researchers used adult stem cells from humans and combined experimental techniques with computational approaches to study the changes in the genome associated with aging. They compared freshly isolated human adult stem cells from young individuals, which can self-renew, to cells from the same individuals that were subjected to prolonged passaging in culture. This accelerated model of adult stem cell aging exhausts the regenerative capacity of the adult stem cells. Researchers looked at the changes in genomic sites that accumulate DNA damage in both groups.

"We found the majority of DNA damage and associated chromatin changes that occurred with adult stem cell aging were due to parts of the genome known as retrotransposons," said King Jordan, associate professor in the School of Biology at Georgia Tech.

"Retroransposons were previously thought to be non-functional and were even labeled as 'junk DNA', but accumulating evidence indicates these elements play an important role in genome regulation," he added.

While the young adult stem cells were able to suppress transcriptional activity of these genomic elements and deal with the damage to the DNA, older adult stem cells were not able to scavenge this transcription. New discovery suggests that this event is deleterious for the regenerative ability of stem cells and triggers a process known as cellular senescence.

"By suppressing the accumulation of toxic transcripts from retrotransposons, we were able to reverse the process of human adult stem cell aging in culture," said Lunyak.

"Furthermore, by rewinding the cellular clock in this way, we were not only able to rejuvenate 'aged' human stem cells, but to our surprise we were able to reset them to an earlier developmental stage, by up-regulating the "pluripotency factors" – the proteins that are critically involved in the self-renewal of undifferentiated embryonic stem cells." she said.

Next the team plans to use further analysis to validate the extent to which the rejuvenated stem cells may be suitable for clinical tissue regenerative applications.

The study was conducted by a team with members from the Buck Institute for Research on Aging, the Georgia Institute of Technology, the University of California, San Diego, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, International Computer Science Institute, Applied Biosystems and Tel-Aviv University.

Citation:

Inhibition of activated pericentromeric SINE/Alu repeat transcription in senescent human adult stem cells reinstates self-renewal. Cell Cycle, Volume 10, Issue 17, September 1, 2011

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>