Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists solve mystery of arsenic compound

14.10.2010
Hopkins, Baylor and Stanford scientists identify a protein folding machine in yeast cells that controls the folding of other important 'machines' that power cells, as a target for arsenite, an arsenic compound and common water contaminant

Scientists have solved an important mystery about why an arsenic compound, called arsenite, can kill us, and yet function as an effective therapeutic agent against disease and infections.

According to new research published in the October 2010 issue of Genetics (http://www.genetics.org) scientists from Johns Hopkins, Baylor and Stanford discovered that arsenite, a common water contaminant in many parts of the world, affects a special protein folding machine in yeast, called TCP, also present in humans. This information not only opens the doors to developing safer therapeutic alternatives to arsenite-based medicines, but it may allow researchers counter the negative effects of arsenite poisoning.

"By better understanding arsenite, we might be able to protect humans from its hazards in the future," said Jef D. Boeke, Ph.D., co-author of the study from the Department of Molecular Biology and Genetics and The High Throughput Biology Center at The Johns Hopkins University School of Medicine in Baltimore. "Arsenite also has beneficial effects, and by focusing on these, we might be able to find safer ways to reap the beneficial effects without the inherent risks involved in using a compound derived from arsenic."

To make this discovery, scientists used advanced genomic tools and biochemical experiments to show that arsenic disturbs functions of the machinery (chaperonin complex) required for proper folding and maturation of several proteins and protein complexes within yeast cells. This mechanism of action by arsenic is not unique to yeast, as it has been shown to exist in a range of organisms from bacteria to mammals.

"As the human population grows, freshwater supplies become increasingly precious, but unfortunately some of this water has been contaminated with arsenite," said Mark Johnston, Editor-in-Chief of the journal Genetics. "The more we learn about how this compound affects our bodies, the more we'll eventually be able to counter its deadly effects. In addition, we know that under certain controlled doses, arsenite has therapeutic value. This research hopefully gets us closer to a new generation of drugs that achieve maximum benefit with minimum risk."

DETAILS: Xuewen Pan, Stefanie Reissman, Nick R. Douglas, Zhiwei Huang, Daniel S. Yuan, Xiaoling Wang, J. Michael McCaffery, Judith Frydman, and Jef D. Boeke. Trivalent Arsenic Inhibits the Functions of Chaperonin Complex. Genetics 2010 186: 725-734.

Since 1916, Genetics (http://www.genetics.org) has covered high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. Genetics, the peer-reviewed, peer-edited journal of the Genetics Society of America, is one of the world's most cited journals in genetics and heredity.

Tracey DePellegrin Connelly | EurekAlert!
Further information:
http://www.cmu.edu
http://www.genetics.org

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>