Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists solve mystery of arsenic compound

Hopkins, Baylor and Stanford scientists identify a protein folding machine in yeast cells that controls the folding of other important 'machines' that power cells, as a target for arsenite, an arsenic compound and common water contaminant

Scientists have solved an important mystery about why an arsenic compound, called arsenite, can kill us, and yet function as an effective therapeutic agent against disease and infections.

According to new research published in the October 2010 issue of Genetics ( scientists from Johns Hopkins, Baylor and Stanford discovered that arsenite, a common water contaminant in many parts of the world, affects a special protein folding machine in yeast, called TCP, also present in humans. This information not only opens the doors to developing safer therapeutic alternatives to arsenite-based medicines, but it may allow researchers counter the negative effects of arsenite poisoning.

"By better understanding arsenite, we might be able to protect humans from its hazards in the future," said Jef D. Boeke, Ph.D., co-author of the study from the Department of Molecular Biology and Genetics and The High Throughput Biology Center at The Johns Hopkins University School of Medicine in Baltimore. "Arsenite also has beneficial effects, and by focusing on these, we might be able to find safer ways to reap the beneficial effects without the inherent risks involved in using a compound derived from arsenic."

To make this discovery, scientists used advanced genomic tools and biochemical experiments to show that arsenic disturbs functions of the machinery (chaperonin complex) required for proper folding and maturation of several proteins and protein complexes within yeast cells. This mechanism of action by arsenic is not unique to yeast, as it has been shown to exist in a range of organisms from bacteria to mammals.

"As the human population grows, freshwater supplies become increasingly precious, but unfortunately some of this water has been contaminated with arsenite," said Mark Johnston, Editor-in-Chief of the journal Genetics. "The more we learn about how this compound affects our bodies, the more we'll eventually be able to counter its deadly effects. In addition, we know that under certain controlled doses, arsenite has therapeutic value. This research hopefully gets us closer to a new generation of drugs that achieve maximum benefit with minimum risk."

DETAILS: Xuewen Pan, Stefanie Reissman, Nick R. Douglas, Zhiwei Huang, Daniel S. Yuan, Xiaoling Wang, J. Michael McCaffery, Judith Frydman, and Jef D. Boeke. Trivalent Arsenic Inhibits the Functions of Chaperonin Complex. Genetics 2010 186: 725-734.

Since 1916, Genetics ( has covered high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. Genetics, the peer-reviewed, peer-edited journal of the Genetics Society of America, is one of the world's most cited journals in genetics and heredity.

Tracey DePellegrin Connelly | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>