Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists show how molecular switch helps pancreatic cancer beat drugs

29.01.2010
Researchers at the Moores Cancer Center at the University of California, San Diego, have found one reason that pancreatic cancer tumors are so difficult to treat with drugs. They have shown how a molecular switch steps up pancreatic cancer cell survival as well as resistance to a standard chemotherapy drug, and have identified alternate routes cancer cells take to avoid the effects of the therapy.

The findings, by a group led by Andrew M. Lowy, MD, professor of surgery and chief of surgical oncology at the UCSD School of Medicine and the Moores UCSD Cancer Center, are reported online and will appear February 1 in the journal Cancer Research. The study provides new insights into pancreatic cancer development and new potential drug targets and treatment strategies against the disease.

"To understand how to treat pancreatic cancer tumors, we need to better understand their circuitry and behavior," Lowy said.

Pancreatic cancer is a particularly deadly cancer, fast-moving and difficult to detect early. It's estimated that more than 35,000 people died from pancreatic cancer last year in the United States.

RON is a signaling protein known as a tyrosine kinase, essentially a switch that turns on various activities in cells. Previous work in Lowy's lab showed that RON is overexpressed in a majority of precancerous and pancreatic cancer cells, and could also help cells resist dying. The researchers wanted to find out what role, if any, RON played in pancreatic cancer development and progression.

In a series of experiments, the researchers showed that RON sends signals that regulate the activity of genes that help tumors cells survive, "implying RON is a potent survival signal for pancreatic cancer cells," Lowy said.

To see the effects of reducing or blocking RON activity, the team shut down RON expression in pancreatic cancer cells using a molecular technique called "gene silencing," and then used those cells to establish tumors in mice. Those tumors were treated with gemcitabine, the most common chemotherapy drug used to treat pancreatic cancer patients. Tumors in which RON was silenced were much more sensitive to the chemotherapy than the RON-expressing cancer cells.

"This is the first demonstration that RON-directed therapy in an animal model can sensitize tumors to chemotherapy," Lowy said. Yet, the scientists found that the cancer cells and tumors were eventually able to bypass the silencing agent as well as the drug's effects, and continued to grow.

About 50 percent of the tumor cells re-expressed RON. The researchers also found that the tumor cells activated other growth proteins, including epidermal growth factor receptor (EGFR), to enable them to continue to grow.

"This is what most tumors do," Lowy said, explaining that clinically, pancreatic cancer tumors often respond to therapy at first, only to begin growing again. "We know that diseases such as pancreatic cancer are too complex for one drug to be effective. If we can learn to predict the results of RON-directed therapy, maybe we can combine it with an EGFR-directed therapy, for example, to take away tumor escape routes."

Lowy explained that scientists still need far more information about RON's part in pancreatic cancer development and progression. "We need to figure out which tumors are relying on RON," he said. "If we could develop biomarkers to identify which tumors are going to be susceptible to RON-targeted therapy, then we can begin to figure out what tumors do to escape such treatments."

Other contributors include Jocelyn Logan-Collins, Ryan M. Thomas, Rebecca McClaine, University of Cincinnati; Susan E. Waltz, William Stuart, University of Cincinnati College of Medicine; Bruce Aronow, Cincinnati Children's Hospital; Peter Yu, Dawn Jaquish, Evangeline Mose, Randall French, UCSD School of Medicine; and Robert Hoffman, UCSD School of Medicine and AntiCancer, Inc., San Diego.

Funding support came from several grants from the National Institutes of Health.

The Moores UCSD Cancer Center is one of the nation's 40 National Cancer Institute-designated Comprehensive Cancer Centers, combining research, clinical care and community outreach to advance the prevention, treatment and cure of cancer. For more information, visit http://health.ucsd.edu/cancer. The Ludwig Institute for Cancer Research (www.licr.org) is an international organization with branches in 10 countries.

Steve Benowitz | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>