Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists show how molecular switch helps pancreatic cancer beat drugs

29.01.2010
Researchers at the Moores Cancer Center at the University of California, San Diego, have found one reason that pancreatic cancer tumors are so difficult to treat with drugs. They have shown how a molecular switch steps up pancreatic cancer cell survival as well as resistance to a standard chemotherapy drug, and have identified alternate routes cancer cells take to avoid the effects of the therapy.

The findings, by a group led by Andrew M. Lowy, MD, professor of surgery and chief of surgical oncology at the UCSD School of Medicine and the Moores UCSD Cancer Center, are reported online and will appear February 1 in the journal Cancer Research. The study provides new insights into pancreatic cancer development and new potential drug targets and treatment strategies against the disease.

"To understand how to treat pancreatic cancer tumors, we need to better understand their circuitry and behavior," Lowy said.

Pancreatic cancer is a particularly deadly cancer, fast-moving and difficult to detect early. It's estimated that more than 35,000 people died from pancreatic cancer last year in the United States.

RON is a signaling protein known as a tyrosine kinase, essentially a switch that turns on various activities in cells. Previous work in Lowy's lab showed that RON is overexpressed in a majority of precancerous and pancreatic cancer cells, and could also help cells resist dying. The researchers wanted to find out what role, if any, RON played in pancreatic cancer development and progression.

In a series of experiments, the researchers showed that RON sends signals that regulate the activity of genes that help tumors cells survive, "implying RON is a potent survival signal for pancreatic cancer cells," Lowy said.

To see the effects of reducing or blocking RON activity, the team shut down RON expression in pancreatic cancer cells using a molecular technique called "gene silencing," and then used those cells to establish tumors in mice. Those tumors were treated with gemcitabine, the most common chemotherapy drug used to treat pancreatic cancer patients. Tumors in which RON was silenced were much more sensitive to the chemotherapy than the RON-expressing cancer cells.

"This is the first demonstration that RON-directed therapy in an animal model can sensitize tumors to chemotherapy," Lowy said. Yet, the scientists found that the cancer cells and tumors were eventually able to bypass the silencing agent as well as the drug's effects, and continued to grow.

About 50 percent of the tumor cells re-expressed RON. The researchers also found that the tumor cells activated other growth proteins, including epidermal growth factor receptor (EGFR), to enable them to continue to grow.

"This is what most tumors do," Lowy said, explaining that clinically, pancreatic cancer tumors often respond to therapy at first, only to begin growing again. "We know that diseases such as pancreatic cancer are too complex for one drug to be effective. If we can learn to predict the results of RON-directed therapy, maybe we can combine it with an EGFR-directed therapy, for example, to take away tumor escape routes."

Lowy explained that scientists still need far more information about RON's part in pancreatic cancer development and progression. "We need to figure out which tumors are relying on RON," he said. "If we could develop biomarkers to identify which tumors are going to be susceptible to RON-targeted therapy, then we can begin to figure out what tumors do to escape such treatments."

Other contributors include Jocelyn Logan-Collins, Ryan M. Thomas, Rebecca McClaine, University of Cincinnati; Susan E. Waltz, William Stuart, University of Cincinnati College of Medicine; Bruce Aronow, Cincinnati Children's Hospital; Peter Yu, Dawn Jaquish, Evangeline Mose, Randall French, UCSD School of Medicine; and Robert Hoffman, UCSD School of Medicine and AntiCancer, Inc., San Diego.

Funding support came from several grants from the National Institutes of Health.

The Moores UCSD Cancer Center is one of the nation's 40 National Cancer Institute-designated Comprehensive Cancer Centers, combining research, clinical care and community outreach to advance the prevention, treatment and cure of cancer. For more information, visit http://health.ucsd.edu/cancer. The Ludwig Institute for Cancer Research (www.licr.org) is an international organization with branches in 10 countries.

Steve Benowitz | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>