Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Reveal Nerve Cells’ Navigation System

Work in flies and mice has implications for regeneration therapies

Johns Hopkins scientists have discovered how two closely related proteins guide projections from nerve cells with exquisite accuracy, alternately attracting and repelling these axons as they navigate the most miniscule and frenetic niches of the nervous system to make remarkably precise connections.

The discovery, reported April 28 in the journal Neuron, reveals that proteins belonging to the “semaphorin” family of guidance cues are crucial for getting neuronal projections exactly where they need to be not only across long distances, but also in the short-range wiring of tiny areas fraught with complex circuitry, such as the central nervous system of the fruit fly.

Because signaling that affects the growth and steering of neuronal processes is critical for repairing and regenerating damaged or diseased nerve cells, this research suggests that a more refined understanding of how semaphorin proteins work could contribute to treatment strategies, according to Alex Kolodkin, Ph.D., a professor in the neuroscience department at Johns Hopkins and a Howard Hughes Medical Institute investigator.

Using embryonic flies, some native (normal) and others genetically altered to lack a member of the semaphorin gene family or the receptor that binds to the semaphorin and signals within the responding neuron, the team labeled particular classes of neurons and then observed them at high resolution using various microscopy strategies to compare their axon projections.

In the native developing flies, the team saw how certain related semaphorins, proteins that nerve cells secrete into the intracellular space, work through binding their plexin receptor. First, a semaphorin-plexin pair attracts a certain class of extending neurons in the embryonic fly central nervous system assemble a specific set of target projections. Then, a related semaphorin that binds to that same plexin receptor repels these same neurons so as to position them correctly with in the central nervous system. Finally, the attractive semaphorin/plexin interaction assures the establishment of precise connections between these central nervous system axons and sensory neurons that convey messages about the external environment by extending their axons into the CNS from the periphery and contacting the assembled CNS pathways. Flies lacking this semaphorin/plexin signaling showed defects in these connections, which the researchers were able to reverse when these cues and receptors were re-introduced into flies lacking them.

To investigate whether the absence of semaphorin in flies had behavioral consequences, the team collaborated with investigators at Janelia Farm laboratories of the Howard Hughes Medical Institute and used specialized computer software to follow the movements of hundreds of fly larvae crawling on a small dish. The plate was perched on a large speaker that vibrated with pulses of sound, letting the team compare the movements of normal larvae to mutants missing semaphorin.

The “tracking” software measures differences in normal foraging behavior (mostly crawling straight and occasionally making turns) when a sound is activated. The larvae with intact semaphorin/plexin responded to sound stimulation by stopping, contracting and turning their heads from side to side. The semaphorin mutants failed to respond to the same stimuli. The researchers repeated the experiment using mutant larvae missing the protein to which semaphorin binds – its plexin receptor–and these larvae also showed no reaction to sound-vibration.

“The fly larvae sensory neurons, located on the larval body wall, send axon projections that do not make contact with their appropriate targets in the central nervous system when semaphorin/plexin signaling is absent,” Kolodkin says. “This tells us that semaphorin cues guide not only neuronal processes assembly in the central nervous system, but also incoming projections from sensory neurons to the CNS targets.”

The Kolodkin lab’s experiments in the invertebrate fruit fly central nervous system mirror related findings in the mouse reported Feb. 10, 2011 in Nature. Then, they showed that a different semaphorin cue is important for certain neurons to make precise connections within the developing inner plexiform layer of the retina, an elaborately laminated club-sandwich-like structure that must be precisely wired for accurate visual perception in mammals.

To demonstrate that semaphorins are necessary for neuronal projections from distinct classes of neurons to make their way to correct layers in this retinal “sandwich,” the scientists examined the retinas of 3-, 7- and 10-day-old mice that were genetically modified to lack either a member of the semaphorin gene family or its appropriate plexin receptor. These mutants showed severe connectivity defects in one specific inner plexiform layer, revealing faulty neuronal targeting.

“In two distinct neural systems in flies and mammals, the same family of molecular guidance cues – semaphorins and their receptors – mediate targeting events that require exquisite short-range precision to generate complex neuronal connectivity,” says Kolodkin who, as a postdoctoral fellow in the mid-1990s, first discovered the large family of semaphorin guidance cues working with the grasshopper nervous system.

“This work begins to tell us how, in a very small but highly ordered region of the nervous system, select target innervation and specific synaptic contacts between different classes of neurons can be established in the context of evolving circuit complexity” Kolodkin says.

The fly research appearing in Neuron was supported by the National Institutes of Health and the Howard Hughes Medical Institute.

The mouse retina research appearing in Nature was supported by the National Institutes of Health and the Howard Hughes Medical Institute.

Authors of the fly nervous system study published in Neuron, in addition to Kolodkin, are, Zhuhao Wu, Joseph C. Ayoob, Kayam Chak, and Benjamin J. Andreone, all of Johns Hopkins; Lora B. Sweeney and Liqun Luo, both of Stanford University; and Rex Kerr and Marta Zlatic, both of Janelia Farm Research Campus.

Authors of the mammalian retina study published in Nature, in addition to Kolodkin, are Ryota L. Matsuoka and Tudor C. Badea, both of Johns Hopkins; and KimT.Nguyen-Ba-Charvet, Aijaz Parray, and Alain Che´dotal, all of the Institut de la Vision, Paris.

On the Web:
Alex Kolodkin:

Maryalice Yakutchik | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>