Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Present First Genetic Evidence for Why Placebos Work

22.07.2009
UCLA researchers have discovered the first genetic link to placebo: they report that in people suffering from Major Depressive Disorder, genes that influence the brain's reward pathways may modulate the response to placebos.

Placebos are a sham — usually mere sugar pills designed to represent "no treatment" in a clinical treatment study. The effectiveness of the actual medication is compared with the placebo to determine if the medication works.

And yet, for some people, the placebo works nearly as well as the medication. How well placebos work varies widely among individuals. Why that is so, and why they work at all, remains a mystery, thought to be based on some combination of biological and psychological factors.

Now, researchers at UCLA have found a new explanation: genetics. Dr. Andrew Leuchter, a professor of psychiatry at the UCLA Semel Institute for Neuroscience and Human Behavior, and colleagues report that in people suffering from major depressive disorder, or MDD, genes that influence the brain's reward pathways may modulate the response to placebos. The research appears in the August edition of the Journal of Clinical Psychopharmacology (currently available online by subscription).

Placebos are thought to act by stimulating the brain's central reward pathways by releasing a class of neurotransmitters called monoamines, specifically dopamine and norepinephrine. These are the brain chemicals that make us "feel good." Because the chemical signaling done by monoamines is under strong genetic control, the scientists reasoned that common genetic variations between individuals — called genetic polymorphisms — could influence the placebo response.

Researchers took blood samples from 84 people diagnosed with MDD; 32 were given medication and 52 a placebo. The researchers looked at the polymorphisms in genes that coded for two enzymes that regulate monoamine levels: catechol-O-methyltransferase (COMT) and monoamine oxidase A (MAO-A). Subjects with the highest enzyme activity within the MAO-A polymorphism had a significantly lower placebo response than those with other genotypes. With respect to COMT, those with lower enzyme activity within this polymorphism had a lower placebo response.

"Our findings suggest that patients with MDD who have specific MAO-A and COMT genotypes may be biologically advantaged or disadvantaged in mounting a placebo response, because of the activity of these two enzymes," said Leuchter, who directs the Laboratory of Brain, Behavior and Pharmacology at the UCLA Semel Institute.

"To our knowledge, this is the first study to examine the association between MAO-A and COMT polymorphisms and a response to placebo in people who suffer from major depressive disorder," he said.

Leuchter noted that this is not the sole explanation for a response to a placebo, which is likely to be caused by many factors, both biological and psychosocial. "But the data suggests that individual differences in response to placebo are significantly influenced by individual genotypes," he said.

Including the influence of genotype in the design of clinical trials could facilitate more powerful testing of future treatments, Leuchter said.

Funding for the study was provided by the National Center for Complementary and Alternative Medicine of the National Institutes of Health, Eli Lilly and Co., and Pfizer Inc.

Other authors included James McCracken, Aimee Hunter and Ian Cook, all of UCLA, and Jonathan Alpert of Massachusetts General Hospital and Harvard University.

Author disclosure information:

Dr. Andrew Leuchter has provided scientific consultation or served on advisory boards of a number of companies, including Eli Lilly and Co., where he has also served in the speakers bureau. He has received research/grant support from the National Center for Complementary and Alternative Medicine, Eli Lilly and Co., and Pfizer Inc., among others.

Dr. James T. McCracken has served as an adviser and consultant for Eli Lilly and Co. and other companies and receives research support from, among others, Eli Lilly and Co.

Aimee M. Hunter has nothing to disclose financially.

Dr. Ian A. Cook has served in the speakers bureau for Pfizer Pharmaceuticals Inc. and other companies and has received research support from, among others, Eli Lilly and Co. and Pfizer Inc.

Dr. Jonathan E. Alpert has served as an adviser and consultant for Eli Lilly and Co. and other companies and has served in the speakers bureau for Eli Lilly and Co. He receives research support from, among others, Eli Lilly and Co. and Pfizer Inc.

The Semel Institute for Neuroscience and Human Behavior is an interdisciplinary research and education institute devoted to the understanding of complex human behavior, including the genetic, biological, behavioral and sociocultural underpinnings of normal behavior, and the causes and consequences of neuropsychiatric disorders. In addition to conducting fundamental research, institute faculty seek to develop effective treatments for neurological and psychiatric disorders, improve access to mental health services and shape national health policy regarding neuropsychiatric disorders.

Mark Wheeler | Newswise Science News
Further information:
http://www.ucla.edu/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>