Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Present First Genetic Evidence for Why Placebos Work

22.07.2009
UCLA researchers have discovered the first genetic link to placebo: they report that in people suffering from Major Depressive Disorder, genes that influence the brain's reward pathways may modulate the response to placebos.

Placebos are a sham — usually mere sugar pills designed to represent "no treatment" in a clinical treatment study. The effectiveness of the actual medication is compared with the placebo to determine if the medication works.

And yet, for some people, the placebo works nearly as well as the medication. How well placebos work varies widely among individuals. Why that is so, and why they work at all, remains a mystery, thought to be based on some combination of biological and psychological factors.

Now, researchers at UCLA have found a new explanation: genetics. Dr. Andrew Leuchter, a professor of psychiatry at the UCLA Semel Institute for Neuroscience and Human Behavior, and colleagues report that in people suffering from major depressive disorder, or MDD, genes that influence the brain's reward pathways may modulate the response to placebos. The research appears in the August edition of the Journal of Clinical Psychopharmacology (currently available online by subscription).

Placebos are thought to act by stimulating the brain's central reward pathways by releasing a class of neurotransmitters called monoamines, specifically dopamine and norepinephrine. These are the brain chemicals that make us "feel good." Because the chemical signaling done by monoamines is under strong genetic control, the scientists reasoned that common genetic variations between individuals — called genetic polymorphisms — could influence the placebo response.

Researchers took blood samples from 84 people diagnosed with MDD; 32 were given medication and 52 a placebo. The researchers looked at the polymorphisms in genes that coded for two enzymes that regulate monoamine levels: catechol-O-methyltransferase (COMT) and monoamine oxidase A (MAO-A). Subjects with the highest enzyme activity within the MAO-A polymorphism had a significantly lower placebo response than those with other genotypes. With respect to COMT, those with lower enzyme activity within this polymorphism had a lower placebo response.

"Our findings suggest that patients with MDD who have specific MAO-A and COMT genotypes may be biologically advantaged or disadvantaged in mounting a placebo response, because of the activity of these two enzymes," said Leuchter, who directs the Laboratory of Brain, Behavior and Pharmacology at the UCLA Semel Institute.

"To our knowledge, this is the first study to examine the association between MAO-A and COMT polymorphisms and a response to placebo in people who suffer from major depressive disorder," he said.

Leuchter noted that this is not the sole explanation for a response to a placebo, which is likely to be caused by many factors, both biological and psychosocial. "But the data suggests that individual differences in response to placebo are significantly influenced by individual genotypes," he said.

Including the influence of genotype in the design of clinical trials could facilitate more powerful testing of future treatments, Leuchter said.

Funding for the study was provided by the National Center for Complementary and Alternative Medicine of the National Institutes of Health, Eli Lilly and Co., and Pfizer Inc.

Other authors included James McCracken, Aimee Hunter and Ian Cook, all of UCLA, and Jonathan Alpert of Massachusetts General Hospital and Harvard University.

Author disclosure information:

Dr. Andrew Leuchter has provided scientific consultation or served on advisory boards of a number of companies, including Eli Lilly and Co., where he has also served in the speakers bureau. He has received research/grant support from the National Center for Complementary and Alternative Medicine, Eli Lilly and Co., and Pfizer Inc., among others.

Dr. James T. McCracken has served as an adviser and consultant for Eli Lilly and Co. and other companies and receives research support from, among others, Eli Lilly and Co.

Aimee M. Hunter has nothing to disclose financially.

Dr. Ian A. Cook has served in the speakers bureau for Pfizer Pharmaceuticals Inc. and other companies and has received research support from, among others, Eli Lilly and Co. and Pfizer Inc.

Dr. Jonathan E. Alpert has served as an adviser and consultant for Eli Lilly and Co. and other companies and has served in the speakers bureau for Eli Lilly and Co. He receives research support from, among others, Eli Lilly and Co. and Pfizer Inc.

The Semel Institute for Neuroscience and Human Behavior is an interdisciplinary research and education institute devoted to the understanding of complex human behavior, including the genetic, biological, behavioral and sociocultural underpinnings of normal behavior, and the causes and consequences of neuropsychiatric disorders. In addition to conducting fundamental research, institute faculty seek to develop effective treatments for neurological and psychiatric disorders, improve access to mental health services and shape national health policy regarding neuropsychiatric disorders.

Mark Wheeler | Newswise Science News
Further information:
http://www.ucla.edu/

More articles from Life Sciences:

nachricht Scientists call for improved technologies to save imperiled California salmon
14.12.2017 | NOAA Fisheries West Coast Region

nachricht Cardiolinc™: an NPO to personalize treatment for cardiovascular disease patients
14.12.2017 | Luxembourg Institute of Health

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Protein Structure Could Unlock New Treatments for Cystic Fibrosis

14.12.2017 | Life Sciences

Cardiolinc™: an NPO to personalize treatment for cardiovascular disease patients

14.12.2017 | Life Sciences

ASU scientists develop new, rapid pipeline for antimicrobials

14.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>