Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Present First Genetic Evidence for Why Placebos Work

22.07.2009
UCLA researchers have discovered the first genetic link to placebo: they report that in people suffering from Major Depressive Disorder, genes that influence the brain's reward pathways may modulate the response to placebos.

Placebos are a sham — usually mere sugar pills designed to represent "no treatment" in a clinical treatment study. The effectiveness of the actual medication is compared with the placebo to determine if the medication works.

And yet, for some people, the placebo works nearly as well as the medication. How well placebos work varies widely among individuals. Why that is so, and why they work at all, remains a mystery, thought to be based on some combination of biological and psychological factors.

Now, researchers at UCLA have found a new explanation: genetics. Dr. Andrew Leuchter, a professor of psychiatry at the UCLA Semel Institute for Neuroscience and Human Behavior, and colleagues report that in people suffering from major depressive disorder, or MDD, genes that influence the brain's reward pathways may modulate the response to placebos. The research appears in the August edition of the Journal of Clinical Psychopharmacology (currently available online by subscription).

Placebos are thought to act by stimulating the brain's central reward pathways by releasing a class of neurotransmitters called monoamines, specifically dopamine and norepinephrine. These are the brain chemicals that make us "feel good." Because the chemical signaling done by monoamines is under strong genetic control, the scientists reasoned that common genetic variations between individuals — called genetic polymorphisms — could influence the placebo response.

Researchers took blood samples from 84 people diagnosed with MDD; 32 were given medication and 52 a placebo. The researchers looked at the polymorphisms in genes that coded for two enzymes that regulate monoamine levels: catechol-O-methyltransferase (COMT) and monoamine oxidase A (MAO-A). Subjects with the highest enzyme activity within the MAO-A polymorphism had a significantly lower placebo response than those with other genotypes. With respect to COMT, those with lower enzyme activity within this polymorphism had a lower placebo response.

"Our findings suggest that patients with MDD who have specific MAO-A and COMT genotypes may be biologically advantaged or disadvantaged in mounting a placebo response, because of the activity of these two enzymes," said Leuchter, who directs the Laboratory of Brain, Behavior and Pharmacology at the UCLA Semel Institute.

"To our knowledge, this is the first study to examine the association between MAO-A and COMT polymorphisms and a response to placebo in people who suffer from major depressive disorder," he said.

Leuchter noted that this is not the sole explanation for a response to a placebo, which is likely to be caused by many factors, both biological and psychosocial. "But the data suggests that individual differences in response to placebo are significantly influenced by individual genotypes," he said.

Including the influence of genotype in the design of clinical trials could facilitate more powerful testing of future treatments, Leuchter said.

Funding for the study was provided by the National Center for Complementary and Alternative Medicine of the National Institutes of Health, Eli Lilly and Co., and Pfizer Inc.

Other authors included James McCracken, Aimee Hunter and Ian Cook, all of UCLA, and Jonathan Alpert of Massachusetts General Hospital and Harvard University.

Author disclosure information:

Dr. Andrew Leuchter has provided scientific consultation or served on advisory boards of a number of companies, including Eli Lilly and Co., where he has also served in the speakers bureau. He has received research/grant support from the National Center for Complementary and Alternative Medicine, Eli Lilly and Co., and Pfizer Inc., among others.

Dr. James T. McCracken has served as an adviser and consultant for Eli Lilly and Co. and other companies and receives research support from, among others, Eli Lilly and Co.

Aimee M. Hunter has nothing to disclose financially.

Dr. Ian A. Cook has served in the speakers bureau for Pfizer Pharmaceuticals Inc. and other companies and has received research support from, among others, Eli Lilly and Co. and Pfizer Inc.

Dr. Jonathan E. Alpert has served as an adviser and consultant for Eli Lilly and Co. and other companies and has served in the speakers bureau for Eli Lilly and Co. He receives research support from, among others, Eli Lilly and Co. and Pfizer Inc.

The Semel Institute for Neuroscience and Human Behavior is an interdisciplinary research and education institute devoted to the understanding of complex human behavior, including the genetic, biological, behavioral and sociocultural underpinnings of normal behavior, and the causes and consequences of neuropsychiatric disorders. In addition to conducting fundamental research, institute faculty seek to develop effective treatments for neurological and psychiatric disorders, improve access to mental health services and shape national health policy regarding neuropsychiatric disorders.

Mark Wheeler | Newswise Science News
Further information:
http://www.ucla.edu/

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>