Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists open doors to diagnosis of emphysema

03.08.2009
EMBL development may provide powerful new test for inflammatory lung diseases

Chronic inflammatory lung diseases like chronic bronchitis and emphysema are a major global health problem, and the fourth leading cause of death and disability in developed countries, with smoking accounting for 90% of the risk for developing them.

Work by scientists at the European Molecular Biology Laboratory (EMBL) and its Molecular Medicine Partnership Unit (MMPU) with the University of Heidelberg, Germany, has shed new light on the underlying disease process of emphysema using a technique which could in future be adapted for use in diagnosis. The study is published today in Nature Chemical Biology.

The researchers present a new strategy for testing the activity of MMP12, an enzyme known to be involved in the development of emphysema. Emphysema is characterised by the damage and destruction of the alveoli, the tiny air-sacs of the lungs that are crucial for respiration and uptake of oxygen from the air.

Cigarette smoke and other irritants activate immune cells, like macrophages, in the lungs to destroy the foreign material, and chronic exposure causes inflammation. MMP12 is an enzyme secreted by macrophages which usually helps them to break down the extracellular matrix (the complex network of proteins and fibers that surround and support the cells of the body), a process important for normal wound healing. However, over-stimulation of macrophages by irritants leads to build up of excess MMP12, which starts to damage the delicate structure of the small airspaces of the lungs, eventually leading to emphysema.

“We developed a tool which, for the first time, allows us to study MMP12 activity in specific cells, as if we were actually looking inside the lungs,” says Carsten Schultz, whose group carried out the research at EMBL.

The researchers designed a special fluorescent probe that essentially allows MMP12 activity in macrophages to be quantified by the amount of fluorescence they take up. Applying this test to samples of lung cells from a mouse model of acute lung inflammation showed that MMP12 activity in macrophages was indeed increased.

Although the study was performed in mice, the researchers hope that in future it will be possible to adapt the test for use in patients. “It would allow us to use MMP12 as a biomarker to monitor disease evolution and the risk of emphysema formation. It could also serve to examine the response to therapeutic interventions in patients with inflammatory lung diseases,” says Marcus Mall, group leader at the Children's Hospital at the University of Heidelberg.

The EMBL and University researchers hope that the new testing strategy can be extended to other enzymes involved in lung inflammation and that, with a better picture of the processes underlying these diseases, future treatments could be more specific, reducing the side-effects often caused by broad spectrum treatments.

Anna-Lynn Wegener
Press Officer
EMBL
Meyerhofstrasse 1
D-69117 Heidelberg
Tel: +49 6221 387452
Fax: +49 6221 387525
anna.wegener@embl.de

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org
http://www.embl.de/aboutus/news/pr_archive/2009/090802_Heidelberg/index.html

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>