Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists move a step closer to understanding why leopards can't change their spots

Research published in the journal Genetics identifies at least three different genes responsible for stripes and spots on domestic cats, and opens the door to future research that could impact human skin disorders

The leopard cannot change its spots, nor can the tiger change its stripes, but a new research report published in the January 2009 issue of the journal GENETICS tells us something about how cats end up with their spots and stripes.

It demonstrates for the first time that at least three different genes are involved in the emergence of stripes, spots, and other markings on domestic cats. Researchers have also determined the genomic location of two of these genes, which will allow for further studies that could shine scientific light on various human skin disorders.

"We hope that the study opens up the possibility of directly investigating the genes involved in pattern formation (i.e., the establishment of stripes, spots, and other markings) on the skin of mammals, including their structure, function, and regulation," said Eduardo Eizirik, a researcher involved in the work from the Pontifical Catholic University of Rio Grande do Sul, Brazil. "From these studies, we hope to understand how the different coat patterns have evolved in different mammalian groups, and to be able to investigate their roles in adaptation to different environments, such as their importance for camouflage in wild cat species."

Scientists crossed domestic cats with different coat patterns, such as stripes and blotches, and tracked the inheritance of these patterns among their offspring. Genetic samples were collected and used to type various molecular markers. Results showed that specific markers were inherited by a kitten every time a given coat pattern appeared, suggesting that the marker and the gene causing the coat pattern were located in the same region of the genome. Using statistical procedures called linkage mapping, scientists determined the genomic location of two genes involved in these traits. By clarifying the inheritance of markings in one mammalian species, researchers hope to identify and characterize the implicated genes and then determine if they apply to other mammals, such as humans. The hope is that this discovery will shed new light on human skin diseases that appear to follow standardized patterns.

"Coat color and markings of animals are obvious traits that have long attracted the interest of geneticists" said Mark Johnston, Editor-in-Chief of the journal GENETICS, "and this study in cats may ultimately help us better understand the genetics behind hair and skin color in other mammals. In turn, this understanding could lead to new therapeutic strategies to correct skin problems in people."

DETAILS: Eduardo Eizirik, Victor A. David, Valerie Buckley-Beason, Melody E. Roelke, Alejandro A. Schäffer, Steven S. Hannah, Kristina Narfström, Stephen J. O'Brien, and Marilyn Menotti-Raymond
Defining and Mapping Mammalian Coat Pattern Genes: Multiple Genomic Regions Implicated in Domestic Cat Stripes and Spots

Genetics 2010 184: 267�

Since 1916, GENETICS ( has covered high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. GENETICS, the peer-reviewed, peer-edited journal of the Genetics Society of America is one of the world's most cited journals in genetics and heredity.

Tracey DePellegrin Connelly | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>