Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists isolate new antifreeze molecule in Alaska beetle

15.12.2009
Scientists have identified a novel antifreeze molecule in a freeze-tolerant Alaska beetle able to survive temperatures below minus 100 degrees Fahrenheit. Unlike all previously described biological antifreezes that contain protein, this new molecule, called xylomannan, has little or no protein. It is composed of a sugar and a fatty acid and may exist in new places within the cells of organisms.

"The most exciting part of this discovery is that this molecule is a whole new kind of antifreeze that may work in a different location of the cell and in a different way," said zoophysiologist Brian Barnes, director of the University of Alaska Fairbanks Institute of Arctic Biology and one of five scientists who participated in the Alaska Upis ceramboides beetle project.

Just as ice crystals form over ice cream left too long in a freezer, ice crystals in an insect or other organism can draw so much water out of the organism’s cells that those cells die. Antifreeze molecules function to keep small ice crystals small or to prevent ice crystals from forming at all. They may help freeze-tolerant organisms survive by preventing freezing from penetrating into cells, a lethal condition. Other insects use these molecules to resist freezing by supercooling when they lower their body temperature below the freezing point without becoming solid.

UAF graduate student and project collaborator Todd Sformo found that the Alaska Upis beetle, which has no common name, first freezes at about minus 18.5 degrees Fahrenheit in the lab and survives temperatures down to about 104 degrees below zero Fahrenheit.

"It seems paradoxical that we find an antifreeze molecule in an organism that wants to freeze and that’s adapted to freezing," said Barnes, whose research group is involved in locating insects, determining their strategies of overwintering and identifying the mechanisms that help them get through the winter

A possible advantage of this novel molecule comes from it having the same fatty acid that cells membranes do. This similarity, says Barnes, may allow the molecule to become part of a cell wall and protect the cell from internal ice crystal formation. Antifreeze molecules made of proteins may not fit into cell membranes.

"There are many difficult studies ahead," said Barnes. "To find out how common this biologic antifreeze is and how it actually prevents freezing and where exactly it’s located."

This project was led by Kent Walters at the University of Notre Dame with collaborators Anthony Serianni and John H. Duman of UND and Barnes and Sformo of UAF and was published in the Dec. 1 issue of the journal Proceedings of the National Academy of Sciences.

CONTACT: Brian M. Barnes, director, Institute of Arctic Biology, University of Alaska Fairbanks, bmbarnes@alaska.edu, 907-474-7649. Todd Sformo, wildlife biologist, North Slope Borough, Department of Wildlife Management, Alaska, tlsformo@alaska.edu, 907-852-0350 ext. 244. Marie Gilbert, information officer, Institute of Arctic Biology, University of Alaska Fairbanks, megilbert@alaska.edu, 907-474-7412.

REPORTERS: Brian Barnes is attending the American Geophysical Union fall meeting in San Francisco Dec. 14-18 and will be available by email during that time.

Marie Gilbert | EurekAlert!
Further information:
http://www.alaska.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>