Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists isolate new antifreeze molecule in Alaska beetle

Scientists have identified a novel antifreeze molecule in a freeze-tolerant Alaska beetle able to survive temperatures below minus 100 degrees Fahrenheit. Unlike all previously described biological antifreezes that contain protein, this new molecule, called xylomannan, has little or no protein. It is composed of a sugar and a fatty acid and may exist in new places within the cells of organisms.

"The most exciting part of this discovery is that this molecule is a whole new kind of antifreeze that may work in a different location of the cell and in a different way," said zoophysiologist Brian Barnes, director of the University of Alaska Fairbanks Institute of Arctic Biology and one of five scientists who participated in the Alaska Upis ceramboides beetle project.

Just as ice crystals form over ice cream left too long in a freezer, ice crystals in an insect or other organism can draw so much water out of the organism’s cells that those cells die. Antifreeze molecules function to keep small ice crystals small or to prevent ice crystals from forming at all. They may help freeze-tolerant organisms survive by preventing freezing from penetrating into cells, a lethal condition. Other insects use these molecules to resist freezing by supercooling when they lower their body temperature below the freezing point without becoming solid.

UAF graduate student and project collaborator Todd Sformo found that the Alaska Upis beetle, which has no common name, first freezes at about minus 18.5 degrees Fahrenheit in the lab and survives temperatures down to about 104 degrees below zero Fahrenheit.

"It seems paradoxical that we find an antifreeze molecule in an organism that wants to freeze and that’s adapted to freezing," said Barnes, whose research group is involved in locating insects, determining their strategies of overwintering and identifying the mechanisms that help them get through the winter

A possible advantage of this novel molecule comes from it having the same fatty acid that cells membranes do. This similarity, says Barnes, may allow the molecule to become part of a cell wall and protect the cell from internal ice crystal formation. Antifreeze molecules made of proteins may not fit into cell membranes.

"There are many difficult studies ahead," said Barnes. "To find out how common this biologic antifreeze is and how it actually prevents freezing and where exactly it’s located."

This project was led by Kent Walters at the University of Notre Dame with collaborators Anthony Serianni and John H. Duman of UND and Barnes and Sformo of UAF and was published in the Dec. 1 issue of the journal Proceedings of the National Academy of Sciences.

CONTACT: Brian M. Barnes, director, Institute of Arctic Biology, University of Alaska Fairbanks,, 907-474-7649. Todd Sformo, wildlife biologist, North Slope Borough, Department of Wildlife Management, Alaska,, 907-852-0350 ext. 244. Marie Gilbert, information officer, Institute of Arctic Biology, University of Alaska Fairbanks,, 907-474-7412.

REPORTERS: Brian Barnes is attending the American Geophysical Union fall meeting in San Francisco Dec. 14-18 and will be available by email during that time.

Marie Gilbert | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>