Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify new pathogenic & protective microbes associated with severe diarrhea

27.06.2014

In a finding that may one day help control a major cause of death among children in developing countries, a team of researchers led by faculty from the University of Maryland, College Park and the University of Maryland School of Medicine has identified microorganisms that may trigger diarrheal disease and others that may protect against it. These microbes were not widely linked to the condition previously.

"We were able to identify interactions between microbiota that were not previously observed, and we think that some of those interactions may actually help prevent the onset of severe diarrhea," says O. Colin Stine, a professor of epidemiology and public health at the University of Maryland School of Medicine.


Mihai Pop, an associate professor of computer science at the University of Maryland, recently concluded a major study of diarrheal pathogens in young children from low-income countries.

Credit: University of Maryland

A much better understanding of these interactions is important, Stine adds, as they could lead to possible dietary interventions. Moderate to severe diarrhea (MSD) is a major cause of childhood mortality in developing countries and ranks as one of the top four causes of death among young children in sub-Saharan Africa and South Asia.

Stine and Mihai Pop, an associate professor of computer science at the University of Maryland, College Park led the six-year project funded by $10.1 million from the Bill & Melinda Gates Foundation. The research results are available in a paper published today in the journal Genome Biology.

The researchers used a technique called high-throughput 16S rRNA genomic sequencing to examine both "good" and "bad" microbiota -- the tens of trillions of microbes that inhabit the human intestinal system -- in samples taken from 992 children in Bangladesh, The Gambia, Kenya and Mali under the age of 5 who were suffering from MSD.

The researchers identified statistically significant disease associations with several organisms already implicated in diarrheal disease, such as members of the Escherichia/Shigella genus and Campylobacter jejuni. They also found that organisms not widely believed to cause the disease, including Streptococcus and Granulicatella, correlated with the condition in their study. In addition, the study revealed that the Prevotella genus and Lactobacillus ruminis may play a protective role against diarrhea.

The project is an offshoot of a $20 million study commissioned by the Gates Foundation in 2006. The Global Enterics Multicenter Study (GEMS) was launched in response to unanswered questions surrounding the burden and etiology of childhood diarrhea in developing countries.

GEMS collected troves of useful data on MSD, yet there were still some uncertainties, says Pop, who also has an appointment in the University of Maryland Institute for Advanced Computer Studies.

For example, in almost 50 percent of the children examined with diarrhea, the condition could not be attributed to a specific causal pathogen. The GEMS research also found numerous children carrying Shigella, which is known to cause problems, yet the children showed no signs of MSD.

The Gates Foundation contacted the two University of Maryland scientists in 2007, looking for new analyses of the GEMS data via a combination of computational biology, epidemiology and public health.

"New technologies have opened up new windows of discovery, so they asked us to look at the samples," says Pop, who adds that he and Stine expect to conduct further genomic and epidemiological studies to assess the potential development of diet- or microbiological-based therapeutics.

The longstanding scientific collaboration between the two researchers is enhanced by the MPowering the State strategic partnership, launched in 2011 to support collaborative research and education between the state's top two public research institutions, the University of Maryland, College Park and the University of Maryland, Baltimore.

###

In addition to funding from the Bill & Melinda Gates Foundation, this study was also supported partly by the National Institutes of Health, the National Science Foundation and The Wellcome Trust.

About the University of Maryland, College Park

The University of Maryland is the state's flagship university and one of the nation's preeminent public research universities. A global leader in research, entrepreneurship and innovation, the university is home to more than 37,000 students, 9,000 faculty and staff, and 250 academic programs. Its faculty includes three Nobel laureates, two Pulitzer Prize winners, 49 members of the national academies and scores of Fulbright scholars. The institution has a $1.8 billion operating budget, secures $500 million annually in external research funding and recently completed a $1 billion fundraising campaign.

About the University of Maryland School of Medicine

Established in 1807, The School of Medicine is the first public and the fifth oldest medical school in the United States, and the first to institute a residency-training program. The School of Medicine was the founding school of the University of Maryland and today is an integral part of the 11-campus University System of Maryland. On the University of Maryland's Baltimore campus, the School of Medicine serves as the anchor for a large academic health center which aims to provide the best medical education, conduct the most innovative biomedical research and provide the best patient care and community service to Maryland and beyond. While its tradition of academic excellence remains constant, the School of Medicine is increasingly known as one of the largest and fastest-growing biomedical research institutions in the nation.

Tom Ventsias | Eurek Alert!

Further reports about: GEMS MSD Medicine Shigella academic diarrhea identify interactions microbes pathogenic protective severe

More articles from Life Sciences:

nachricht IU-led study reveals new insights into light color sensing and transfer of genetic traits
06.05.2016 | Indiana University

nachricht Thievish hoverfly steals prey from carnivorous sundews
06.05.2016 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Expanding tropics pushing high altitude clouds towards poles, NASA study finds

06.05.2016 | Earth Sciences

IU-led study reveals new insights into light color sensing and transfer of genetic traits

06.05.2016 | Life Sciences

Thievish hoverfly steals prey from carnivorous sundews

06.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>