Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify key gene that protects against leukemia

14.04.2009
Researchers have identified a gene that controls the rapid production and differentiation of the stem cells that produce all blood cell types—a discovery that could eventually open the door to more streamlined treatments for leukemia and other blood cancers, in which blood cells proliferate out of control.

Additionally, in investigating the mechanisms of this gene, the scientists uncovered evidence that could lead to a protocol for bone marrow transplants that could boost the chance of a cure in some patients.

The research, led by Emmanuelle Passegué, PhD, of the University of California, San Francisco, demonstrates that the JunB gene is at the center of a complex network of molecular and environmental signals that regulate the proliferation and differentiation of hematopoietic stem cells, the multipotent, self-renewing cells that give rise to all blood cell types.

In the study published April 7, 2009, in the journal Cancer Cell, Passegué’s team studied the behavior of JunB-deficient HSCs in both the culture dish and when transplanted into mice.In every case in which engraftment of the HSCs occurred in the mice, the scientists noted a progressive expansion of the myeloidlineage, which constitutes a type of mature white blood cell that fights infection. This expansion led by 6 to 12 months post-transplantation to the development of a myeloproliferative disease, which can evolve to leukemia. The finding indicated that the proliferating JunB-deficient HSCs causes leukemia.

Like traffic lights, which limit speed, direct the flow of vehicles and prevent accidents, JunB curtails both the rate at which HSCs are proliferating and the rate of differentiation toward the myeloid lineage that ultimately results in leukemia. The striking analogy inspired the image for the cover of Cancer Cell’s April 7 issue.

Without JunB, HSCs lose their ability to respond to signals from the protein receptors Notch and TGF-beta, which reside on the cells’ surface and play critical roles in determining cell fate.

“By uncovering this mechanism, we might one day be able to determine the difference between normal HSCs and leukemic stem cells in gene regulatory networks. This could allow us to develop more targeted therapies. These kinds of therapeutic applications are still down the road, but they can happen very quickly in the blood/leukemia field,” says Passegué.

Passegué’s study represents a turnabout from other research, which has demonstrated that mutated HSC that cause leukemia burn out at a faster rate than normal HSCs. In contrast, this study shows that JunB does not effect the cells’ potential for unlimited self-renewal.

The researchers demonstrated this by treating both JunB-deficient mice and control mice with the powerful chemotherapy drug 5-FU, which was given to deplete regenerating HSCs. As expected, JunB-deficient mice consistently displayed higher levels of myeloid lineage than the control group, indicating constant regeneration of a myeloproliferative disease from JunB-deficient HSCs that persisted after treatment. When researchers compared survival rates of the animals during several cycles of treatment, they found little difference between the two groups, indicating that JunB-deficient HSCsdo not exhaust faster than the control HSCs.

In tracking the differences between the JunB-deficient mice and the control group, it became apparent to the researchers that purity of HSCs was a key factor in determining the success of engraftment. Initially, the scientists were struck by the disparity in engraftment between the JunB-deficient HSCs and the control HSCs. But with the use of SLAM cells, a highly purified HSC population, they found that the two groups displayed in fact identical engraftment.

This finding may have important ramifications for patients undergoing bone marrow transplants, for leukemia, lymphoma, multiple myeloma and certain cancers.

“Currently, patients undergoing bone marrow transplants may not be getting enough of the quiescent transplanted HSCs that are optimal for successful engraftment,” says Passegué. Using a highly purified HSC population could be more beneficial.”

Senior author Passegué and first author Marianne Santaguida, PhD, are from the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF. Co-authors from the same center are Koen Schepers, PhD, and Bryan King.

Other co-authors are Benjamin Braun, MD, PhD, and Amit Sabnis, MD, of the UCSF Department of Pediatrics; E. Camilla Forsberg, PhD, of the Institute for Biology of Stem Cells at University of California, Santa Cruz, and Joanne Attema, PhD, of the Institute for Experimental Medical Science at Lund University, Sweden.

Research was funded by grants from the Concern Foundation, UCSF Research Evaluation and Allocation Committee and the NIH.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. For further information, visit http://www.ucsf.edu.

For more information about the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, see http://irm.ucsf.edu/.

Jennifer O’Brien | EurekAlert!
Further information:
http://www.ucsf.edu
http://irm.ucsf.edu/

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>