Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify an innate function of vitamin E

21.12.2011
It's rubbed on the skin to reduce signs of aging and consumed by athletes to improve endurance but scientists now have the first evidence of one of vitamin E's normal body functions.

The powerful antioxidant found in most foods helps repair tears in the plasma membranes that protect cells from outside forces and screen what enters and exits, Georgia Health Sciences University researchers report in the journal Nature Communications.

Everyday activities such as eating and exercise can tear the plasma membrane and the new research shows that vitamin E is essential to repair. Without repair of muscle cells, for example, muscles eventually waste away and die in a process similar to what occurs in muscular dystrophy. Muscle weakness also is a common complaint in diabetes, another condition associated with inadequate plasma membrane repair.

"Without any special effort we consume vitamin E every day and we don't even know what it does in our bodies," said Dr. Paul McNeil, GHSU cell biologist and the study's corresponding author. He now feels confident about at least one of its jobs.

Century-old animal studies linked vitamin E deficiency to muscle problems but how that happens remained a mystery until now, McNeil said. His understanding that a lack of membrane repair caused muscle wasting and death prompted McNeil to look at vitamin E.

Vitamin E appears to aid repair in several ways. As an antioxidant, it helps eliminate destructive byproducts from the body's use of oxygen that impede repair. Because it's lipid-soluble, vitamin E can actually insert itself into the membrane to prevent free radicals from attacking. It also can help keep phospholipids, a major membrane component, compliant so they can better repair after a tear.

For example, exercise causes the cell powerhouse, the mitochondria, to burn a lot more oxygen than normal. "As an unavoidable consequence you produce reactive oxygen species," McNeil said. The physical force of exercise tears the membrane. Vitamin E enables adequate plasma membrane repair despite the oxidant challenge and keeps the situation in check.

When he mimicked what happens with exercise by using hydrogen peroxide to produce free radicals, he found that tears in skeletal muscle cells would not heal unless pretreated with vitamin E.

Next steps, which will be aided by two recent National Institutes of Health grants, include examining membrane repair in vitamin E-deficient animals.

McNeil also wants to further examine membrane repair failure in diabetes. Former GHSU graduate student Dr. Amber C. Howard showed in a recent paper in the journal Diabetes that cells taken from animal models of types 1 and 2 diabetes have faulty repair mechanisms. Howard found high glucose was a culprit by soaking cells in a high-glucose solution for eight to 12 weeks, during which time they developed a repair defect. It's also well documented that reactive oxygen species levels are elevated in diabetes.

The Nature Communications paper showed that vitamin E treatment in an animal model of diabetes restored some membrane repair ability. Also, an analogue of the most biologically active form of vitamin E significantly reversed membrane repair deficits caused by high glucose and increased cell survival after tearing cells in culture.

Now McNeil wants to know if he can prevent the development of advanced glycation end products – a sugar that high glucose adds to proteins that his lab has shown can also impede membrane repair – in the animal models of diabetes. The researchers have a drug that at least in cultured animal cells, prevents repair defects from advanced glycation end products.

Howard, first author on the Nature Communications paper, is an instructor at Husson University in Bangor, Maine. McNeil is a faculty member in GHSU's Medical College of Georgia and College of Graduate Studies.

Toni Baker | EurekAlert!
Further information:
http://www.georgiahealth.edu/

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>