Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify an innate function of vitamin E

21.12.2011
It's rubbed on the skin to reduce signs of aging and consumed by athletes to improve endurance but scientists now have the first evidence of one of vitamin E's normal body functions.

The powerful antioxidant found in most foods helps repair tears in the plasma membranes that protect cells from outside forces and screen what enters and exits, Georgia Health Sciences University researchers report in the journal Nature Communications.

Everyday activities such as eating and exercise can tear the plasma membrane and the new research shows that vitamin E is essential to repair. Without repair of muscle cells, for example, muscles eventually waste away and die in a process similar to what occurs in muscular dystrophy. Muscle weakness also is a common complaint in diabetes, another condition associated with inadequate plasma membrane repair.

"Without any special effort we consume vitamin E every day and we don't even know what it does in our bodies," said Dr. Paul McNeil, GHSU cell biologist and the study's corresponding author. He now feels confident about at least one of its jobs.

Century-old animal studies linked vitamin E deficiency to muscle problems but how that happens remained a mystery until now, McNeil said. His understanding that a lack of membrane repair caused muscle wasting and death prompted McNeil to look at vitamin E.

Vitamin E appears to aid repair in several ways. As an antioxidant, it helps eliminate destructive byproducts from the body's use of oxygen that impede repair. Because it's lipid-soluble, vitamin E can actually insert itself into the membrane to prevent free radicals from attacking. It also can help keep phospholipids, a major membrane component, compliant so they can better repair after a tear.

For example, exercise causes the cell powerhouse, the mitochondria, to burn a lot more oxygen than normal. "As an unavoidable consequence you produce reactive oxygen species," McNeil said. The physical force of exercise tears the membrane. Vitamin E enables adequate plasma membrane repair despite the oxidant challenge and keeps the situation in check.

When he mimicked what happens with exercise by using hydrogen peroxide to produce free radicals, he found that tears in skeletal muscle cells would not heal unless pretreated with vitamin E.

Next steps, which will be aided by two recent National Institutes of Health grants, include examining membrane repair in vitamin E-deficient animals.

McNeil also wants to further examine membrane repair failure in diabetes. Former GHSU graduate student Dr. Amber C. Howard showed in a recent paper in the journal Diabetes that cells taken from animal models of types 1 and 2 diabetes have faulty repair mechanisms. Howard found high glucose was a culprit by soaking cells in a high-glucose solution for eight to 12 weeks, during which time they developed a repair defect. It's also well documented that reactive oxygen species levels are elevated in diabetes.

The Nature Communications paper showed that vitamin E treatment in an animal model of diabetes restored some membrane repair ability. Also, an analogue of the most biologically active form of vitamin E significantly reversed membrane repair deficits caused by high glucose and increased cell survival after tearing cells in culture.

Now McNeil wants to know if he can prevent the development of advanced glycation end products – a sugar that high glucose adds to proteins that his lab has shown can also impede membrane repair – in the animal models of diabetes. The researchers have a drug that at least in cultured animal cells, prevents repair defects from advanced glycation end products.

Howard, first author on the Nature Communications paper, is an instructor at Husson University in Bangor, Maine. McNeil is a faculty member in GHSU's Medical College of Georgia and College of Graduate Studies.

Toni Baker | EurekAlert!
Further information:
http://www.georgiahealth.edu/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>