Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Identify Gene for Resistance to Parasitic 'Witchweed'

The parasitic flowering plant Striga, or "witchweed," attacks the roots of host plants, draining needed water and nutrients and leaving them unable to grow and produce any grains. Witchweed is endemic throughout sub-Saharan Africa, causing crop losses that surpass hundreds of millions of dollars annually and exacerbating food shortages in the region.

Among the crops heavily parasitized by witchweed is black-eyed pea, known in Africa as "cowpea" or "niebe" in Francophone countries.

About 80 percent of the world's cowpea crop is grown in sub-Saharan Africa, mostly by subsistence farmers who lack the resources to purchase expensive herbicides and fertilizers. In this region, cowpea is the primary protein source for millions of people, who consume the entire plant – the pea for soups, stews and breads, the leaves as fresh greens, the stems as hay and fodder for cattle.

As the use of cowpea expanded over time, so did the prevalence of Striga gesnerioides, the type of witchweed adapted to parasitize it. Today, witchweed is so virulent that farmers in this semi-arid region must relocate their cowpea crop to new soil every few years.

Now, scientists at the University of Virginia have identified a gene in cowpea that confers resistance to witchweed attack. This discovery will help researchers better understand how some plants can resist Striga, while others, such as corn and sorghum, are susceptible.

The findings are presented in the Aug. 28 issue of the journal Science.

"Discovery of this resistance gene is not only important for improving cowpea, but may help us develop strategies for improving resistance to Striga in other affected crops," said Michael P.Timko, the U.Va. biology professor who led the study.

Currently there are no natural sources of Striga resistance in corn or sorghum, both of which are major cereal grains in the African diet.

"Making plants durably resistant to Striga could have a significant impact on food security for Africa," Timko said.

In recent years, he and other scientists have sequenced the cowpea genome and are using this information to develop cowpea plants with multiple improved agronomic traits.

"It is now possible for us to identify all possible genes for Striga resistance in cowpeas, as well as resistance to other cowpea pathogens," Timko said. "We may even eventually breed a more drought-resistant plant and varieties that have higher levels and a better balance of nutrients. We've reached a point where we can manipulate this plant for the good of millions of people."

Timko's approach is to improve the performance of plants by identifying genes that control key characteristics, and then using selective breeding to emphasize those traits.

While he is finding success breeding parasite-resistant hybrids, there are at least seven different races of Striga, each capable of adapting to changing varieties of cowpeas.

"We are trying to create a plant that is resistant across the board," he said. "Striga is hyper-virulent. This is warfare between the cowpea plant and its parasite, and we keep trying to stay ahead of the enemy."

Michael P. Timko, principal investigator

Michael P. Timko | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>