Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify Gene for Resistance to Parasitic 'Witchweed'

31.08.2009
The parasitic flowering plant Striga, or "witchweed," attacks the roots of host plants, draining needed water and nutrients and leaving them unable to grow and produce any grains. Witchweed is endemic throughout sub-Saharan Africa, causing crop losses that surpass hundreds of millions of dollars annually and exacerbating food shortages in the region.

Among the crops heavily parasitized by witchweed is black-eyed pea, known in Africa as "cowpea" or "niebe" in Francophone countries.

About 80 percent of the world's cowpea crop is grown in sub-Saharan Africa, mostly by subsistence farmers who lack the resources to purchase expensive herbicides and fertilizers. In this region, cowpea is the primary protein source for millions of people, who consume the entire plant – the pea for soups, stews and breads, the leaves as fresh greens, the stems as hay and fodder for cattle.

As the use of cowpea expanded over time, so did the prevalence of Striga gesnerioides, the type of witchweed adapted to parasitize it. Today, witchweed is so virulent that farmers in this semi-arid region must relocate their cowpea crop to new soil every few years.

Now, scientists at the University of Virginia have identified a gene in cowpea that confers resistance to witchweed attack. This discovery will help researchers better understand how some plants can resist Striga, while others, such as corn and sorghum, are susceptible.

The findings are presented in the Aug. 28 issue of the journal Science.

"Discovery of this resistance gene is not only important for improving cowpea, but may help us develop strategies for improving resistance to Striga in other affected crops," said Michael P.Timko, the U.Va. biology professor who led the study.

Currently there are no natural sources of Striga resistance in corn or sorghum, both of which are major cereal grains in the African diet.

"Making plants durably resistant to Striga could have a significant impact on food security for Africa," Timko said.

In recent years, he and other scientists have sequenced the cowpea genome and are using this information to develop cowpea plants with multiple improved agronomic traits.

"It is now possible for us to identify all possible genes for Striga resistance in cowpeas, as well as resistance to other cowpea pathogens," Timko said. "We may even eventually breed a more drought-resistant plant and varieties that have higher levels and a better balance of nutrients. We've reached a point where we can manipulate this plant for the good of millions of people."

Timko's approach is to improve the performance of plants by identifying genes that control key characteristics, and then using selective breeding to emphasize those traits.

While he is finding success breeding parasite-resistant hybrids, there are at least seven different races of Striga, each capable of adapting to changing varieties of cowpeas.

"We are trying to create a plant that is resistant across the board," he said. "Striga is hyper-virulent. This is warfare between the cowpea plant and its parasite, and we keep trying to stay ahead of the enemy."

Michael P. Timko, principal investigator
434-982-5817
mpt9g@virginia.edu

Michael P. Timko | Newswise Science News
Further information:
http://www.virginia.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>