Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify Gene for Resistance to Parasitic 'Witchweed'

31.08.2009
The parasitic flowering plant Striga, or "witchweed," attacks the roots of host plants, draining needed water and nutrients and leaving them unable to grow and produce any grains. Witchweed is endemic throughout sub-Saharan Africa, causing crop losses that surpass hundreds of millions of dollars annually and exacerbating food shortages in the region.

Among the crops heavily parasitized by witchweed is black-eyed pea, known in Africa as "cowpea" or "niebe" in Francophone countries.

About 80 percent of the world's cowpea crop is grown in sub-Saharan Africa, mostly by subsistence farmers who lack the resources to purchase expensive herbicides and fertilizers. In this region, cowpea is the primary protein source for millions of people, who consume the entire plant – the pea for soups, stews and breads, the leaves as fresh greens, the stems as hay and fodder for cattle.

As the use of cowpea expanded over time, so did the prevalence of Striga gesnerioides, the type of witchweed adapted to parasitize it. Today, witchweed is so virulent that farmers in this semi-arid region must relocate their cowpea crop to new soil every few years.

Now, scientists at the University of Virginia have identified a gene in cowpea that confers resistance to witchweed attack. This discovery will help researchers better understand how some plants can resist Striga, while others, such as corn and sorghum, are susceptible.

The findings are presented in the Aug. 28 issue of the journal Science.

"Discovery of this resistance gene is not only important for improving cowpea, but may help us develop strategies for improving resistance to Striga in other affected crops," said Michael P.Timko, the U.Va. biology professor who led the study.

Currently there are no natural sources of Striga resistance in corn or sorghum, both of which are major cereal grains in the African diet.

"Making plants durably resistant to Striga could have a significant impact on food security for Africa," Timko said.

In recent years, he and other scientists have sequenced the cowpea genome and are using this information to develop cowpea plants with multiple improved agronomic traits.

"It is now possible for us to identify all possible genes for Striga resistance in cowpeas, as well as resistance to other cowpea pathogens," Timko said. "We may even eventually breed a more drought-resistant plant and varieties that have higher levels and a better balance of nutrients. We've reached a point where we can manipulate this plant for the good of millions of people."

Timko's approach is to improve the performance of plants by identifying genes that control key characteristics, and then using selective breeding to emphasize those traits.

While he is finding success breeding parasite-resistant hybrids, there are at least seven different races of Striga, each capable of adapting to changing varieties of cowpeas.

"We are trying to create a plant that is resistant across the board," he said. "Striga is hyper-virulent. This is warfare between the cowpea plant and its parasite, and we keep trying to stay ahead of the enemy."

Michael P. Timko, principal investigator
434-982-5817
mpt9g@virginia.edu

Michael P. Timko | Newswise Science News
Further information:
http://www.virginia.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>