Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists identify gene in breast cancer pathway

Scientists at Albert Einstein College of Medicine of Yeshiva University have discovered how a gene crucial in triggering the spread of breast cancer is turned on and off.

The findings could help predict whether breast tumors will metastasize and also reveal potential drug targets for preventing metastasis. The study will appear in the May 20th online edition of the Journal of Cell Science.

A few years ago, Einstein scientists discovered a gene called ZBP1 (zipcode binding protein 1), which helps cells to move, grow and organize spatially. "ZBP1 is very active in the developing embryo but largely silent in adult tissues," says Robert H. Singer, Ph.D., professor and co-chair of anatomy and structural biology and co-director of the Gruss-Lipper Biophotonics Center at Einstein. He is one of ZBP1's discoverers and leader of the current study.

Researchers have subsequently found that ZBP1 is reactivated in several types of cancer, including breast, colorectal, and non-small cell lung cancers; but the gene is silenced in metastasizing cancer cells, as was shown by Dr. Singer and another Einstein scientist, John Condeelis, Ph.D., who also is co-chair of anatomy and structural biology and co-director of the Gruss-Lipper Biophotonics Center at Einstein. The purpose of the current study was to find how the ZBP1 gene is activated and silenced and how it influences the spread of breast cancer.

After examining mouse, rat, and human breast cancer cells, Dr. Singer and his team found that ZBP1 silencing occurs when a methyl group (CH3) attaches to ZBP1's promoter region (the segment of a gene where gene expression is initiated). The attachment of CH3 prevents the promoter from binding to a protein called beta-catenin. And without beta-catenin, the ZBP1 gene is effectively silenced.

The study also showed that the silencing of ZBP1 increases cancer cells' ability to migrate and promotes the proliferation of metastatic cells.

The findings have important implications for forecasting breast cancer outcomes. According to the researchers, signs of ZBP1 silencing in breast cancer cells would indicate that a breast tumor is likely to spread©¤information that would help in choosing a treatment strategy.

The study also points to potential targets for drug treatment. "If you could turn on this protein in cancer cells, or prevent it from being turned off, you could seriously reduce the ability of the cells to metastasize," says Dr. Singer.

The research team is investigating whether the ZBP1 gene in cancer cells could be reactivated¡ªand the cells prevented from metastasizing¡ªby selectively removing CH3 from the ZBP1 promoter.

The paper, "Increased proliferation and migration of breast metastatic cells results from ZBP1 repression by blocking beta-catenin promoter binding," is published in the May 20, 2009, online edition of the Journal of Cell Science. Wei Gu, M.D., Ph.D., instructor in anatomy and structural biology at Einstein, is the lead author. Feng Pan, Ph.D., now at NYU School of Medicine, is a co-author.

Deirdre Branley | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>