Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify gene in breast cancer pathway

14.05.2009
Scientists at Albert Einstein College of Medicine of Yeshiva University have discovered how a gene crucial in triggering the spread of breast cancer is turned on and off.

The findings could help predict whether breast tumors will metastasize and also reveal potential drug targets for preventing metastasis. The study will appear in the May 20th online edition of the Journal of Cell Science.

A few years ago, Einstein scientists discovered a gene called ZBP1 (zipcode binding protein 1), which helps cells to move, grow and organize spatially. "ZBP1 is very active in the developing embryo but largely silent in adult tissues," says Robert H. Singer, Ph.D., professor and co-chair of anatomy and structural biology and co-director of the Gruss-Lipper Biophotonics Center at Einstein. He is one of ZBP1's discoverers and leader of the current study.

Researchers have subsequently found that ZBP1 is reactivated in several types of cancer, including breast, colorectal, and non-small cell lung cancers; but the gene is silenced in metastasizing cancer cells, as was shown by Dr. Singer and another Einstein scientist, John Condeelis, Ph.D., who also is co-chair of anatomy and structural biology and co-director of the Gruss-Lipper Biophotonics Center at Einstein. The purpose of the current study was to find how the ZBP1 gene is activated and silenced and how it influences the spread of breast cancer.

After examining mouse, rat, and human breast cancer cells, Dr. Singer and his team found that ZBP1 silencing occurs when a methyl group (CH3) attaches to ZBP1's promoter region (the segment of a gene where gene expression is initiated). The attachment of CH3 prevents the promoter from binding to a protein called beta-catenin. And without beta-catenin, the ZBP1 gene is effectively silenced.

The study also showed that the silencing of ZBP1 increases cancer cells' ability to migrate and promotes the proliferation of metastatic cells.

The findings have important implications for forecasting breast cancer outcomes. According to the researchers, signs of ZBP1 silencing in breast cancer cells would indicate that a breast tumor is likely to spread©¤information that would help in choosing a treatment strategy.

The study also points to potential targets for drug treatment. "If you could turn on this protein in cancer cells, or prevent it from being turned off, you could seriously reduce the ability of the cells to metastasize," says Dr. Singer.

The research team is investigating whether the ZBP1 gene in cancer cells could be reactivated¡ªand the cells prevented from metastasizing¡ªby selectively removing CH3 from the ZBP1 promoter.

The paper, "Increased proliferation and migration of breast metastatic cells results from ZBP1 repression by blocking beta-catenin promoter binding," is published in the May 20, 2009, online edition of the Journal of Cell Science. Wei Gu, M.D., Ph.D., instructor in anatomy and structural biology at Einstein, is the lead author. Feng Pan, Ph.D., now at NYU School of Medicine, is a co-author.

Deirdre Branley | EurekAlert!
Further information:
http://www.aecom.yu.edu
http://jcs.biologists.org

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>